
M i c r o E M A C SM i c r o E M A C S

Full Screen Text Editor
Reference Manual – Release Version

Version 4.0
March 20, 1996

(C)Copyright 1988 – 1996 by Daniel M. Lawrence
Reference Manual (C)opyright 1988 – 1996

by Brian Straight and Daniel M. Lawrence
All Rights Reserved

(C)Copyright 1988 – 1996 by Daniel M. Lawrence
MicroEMACS 4.0 can be copied and distributed freely for any
non-commercial purposes. Commercial users may use MicroEMACS
4.0 inhouse. Shareware distributors may redistribute
MicroEMACS 4.0 for media costs only. MicroEMACS 4.0 can only
be incorporated into commercial software or resold with the
permission of the current author.

I n t r o d u c t i o nI n t r o d u c t i o n

MicroEMACS is a tool for creating and changing documents, programs, and other text files. It is both
 relatively easy for the novice to use, but also very powerful in the hands of an expert. MicroEMACS can be
 extensively customized for the needs of the individual user.

MicroEMACS allows several files to be edited at the same time. The screen can be split into different
 windows and screens, and text may be moved freely from one window on any screen to the next. Depending on the
 type of file being edited, MicroEMACS can change how it behaves to make editing simple. Editing standard text files,

program files and word processing documents are all possible at the same time.

There are extensive capabilities to make word processing and editing easier. These include commands for
 string searching and replacing, paragraph reformatting and deleting, automatic word wrapping, word move and deletes,

easy case controlling, and automatic word counts.

For complex and repetitive editing tasks editing macroes can be written. These macroes allow the user a
 great degree of flexibility in determining how MicroEMACS behaves. Also, any and all the commands can be used by

any keystroke by changing, or rebinding, what commands various keys invoke. A full multilevel Undo facility allows
the user to recover from most editing errors with little effort.

Special features are also available to perform a diverse set of operations such as file encryption, automatic
 backup file generation, entabbing and detabbing lines, executing operating system commands and filtering of text
 through other programs (like SORT to allow sorting text).

H i s t o r yH i s t o r y

EMACS was originally a text editor written by Richard Stallman at MIT in the early 1970s for Digital
 Equipment computers. Various versions, rewrites and clones have made an appearance since.

This version of MicroEMACS is derived from code written by Dave G. Conroy in 1985. Later modifications
were performed by Steve Wilhite and George Jones. In December of 1985 Daniel Lawrence picked up the then current
source (version 2.0) and made extensive modifications and additions to it over the course of the next eleven years.

 Updates and support for the current version are still available. Commercial support and usage and resale licences are
 also available. The current program author can be contacted by writing to:

USMAIL: Daniel Lawrence
617 New York St
Lafayette, IN 47901

Internet: dan@aquest.com

Support is provided through:

www.aquest.com
follow the links to MicroEMACS

C r e d i t sC r e d i t s

Many people have been involved in creating this software and we wish to credit some of them here. Dave
Conroy, of course, wrote the very first version of MicroEMACS, and it is a credit to his clean coding that so much
work was able to be done to expand it. John Gamble is responsible for writing the MAGIC mode search routines, and
for maintaining all the search code. Jeff Lomicka wrote the appendix on DEC VMS and has supplied a lot of code to
support VMS and the ATARI 1040ST versions. Curtis Smith wrote the original VMS code, helped supporting the
Commodore AMIGA and did much development on various UNIX versions. Also Lance Jones has done a lot of work
on the AMIGA code. Professor Suresh Konda at Carnegie Mellon University has put a lot of effort into writing
complex macroes and finding all the bugs in the macro language before anyone else does.

A special thanks to Dana Hoggatt who has provided an almost daily sounding board for ideas, algorythms
and code. He is responsible for the encryption code directly and has prodded me into adding many features with
simple but poignant questions (Dan? How do we move the upper left corner of the screen? . . . which forced me to
write the text windowing system).

Pierre Perrot dealt with my restrictive path to a generalized windowing version, and produced an excellent
version for MicroSoft Windows. He continues to assist with this environment, forcing me to keep pace with him,
making all the version more interesting.

As to people sending source code and text translations over computer networks like USENET and ARPA
net, there are simply more than can be listed here. [The comments in the edit history in the history.c file mention each
a n d t h e p i e c e t h e y c o n t r i b u t e d] . A l l t h e s e p e o p l e s h o u l d b e t h a n k e d f o r t h e h a r d w o r k t h e y h a v e p u t i n t o
MicroEMACS.

And after all this is the patients of the people waiting for my all too infrequent releases. A lot of work goes
into each release, and as it is not my primary vocation, often much time passes between releases. We are committed to
continue to improve and strenghten MicroEMACS with each new release into the indefinite future.

Daniel M. Lawrence

Installation MicroEMACS Reference Manual

C h a p t e r 1C h a p t e r 1

I n s t a l l a t i o nI n s t a l l a t i o n

MicroEMACS is a programmer’s text editor which is very powerfull, customizable, and exists for a large
number of different types of computer systems. It is particularly usefull for people who work on a lot of different
computers and want to have a familiar and powerful editor which works identically no matter what computer they are
using. But before using MicroEMACS, you must INSTALL it on your computer system. Since each computer is
different, there is usually a different way to install MicroEMACS for each type of computer.

1 . 1 M S D O S , W i n d o w s 9 5 , W i n d o w s N T , O S / 2 – I B M - P C s1 . 1 M S D O S , W i n d o w s 9 5 , W i n d o w s N T , O S / 2 – I B M - P C s

MicroEMACS is packaged for IBM-PC compatable machines as an installable package which will configure
to the target machine. Instillation is very simple. Insert the distribution floppy in the target machine’s A: drive. Then
type, from the command prompt:

a:install

The install program will lead you through the intallation process, step by step, installing the appropriate
versions on your computer’s hard drive.

Under Windows 95 or Windows NT, bring up the file manager, select the A: drive, and double click on the
icon forthe install program.

1 . 2 U N I X1 . 2 U N I X

T h e r e a r e m o r e a v a i l a b l e v a r i e t i e s o f U N I X t h a n a n y o t h e r c u r r e n t l y p o p u l a r o p e r a t i n g s y s t e m .
MicroEMACS is provided in source to attempt to allow the compilation of a version appropriate to any UNIX system.
T h i s u s u a l l y c o n s i s t s o f a T A R o r . z i p fi l e c o n t a i n i n g t h e t r e e o f d i r e c t o r i e s n e e d e d t o b u i l d a n y v e r s i o n o f
MicroEMACS. Follow these steps to build an executable:

1. Copy the distribution file to an appropriate empty directory on the target system.

2. Unpack the distribution file, using tar or unzip or whatever appropriate unpacking program.

3. Change directory to the directory most closely approximating the target system’s version of unix. These
include:

AIX IBM’s propriatary UNIX varient
BSD University of Berkeley’s popular BSD varients
DGUX Data General UNIX
FREEBSD FreeBSD running on an IBM-PC
HPUX Hewlett Packard’s UNIX
SUN Sun Microsystem’s UNIX
XENIX Microsoft UNIX

4. Copy ../h/estruct.h to the current directory.

5. Edit estruct.h to turn on the proper Operating system, Compiler and option switches by changing the value of
their #defines from 0 to 1.

6. Issue a “make” command to build the executable.

7. Change to the BIN subdirectory.

1

MicroEMACS Reference Manual Installation

8. copy the resulting executable, and the files of the CMD subdirectory from the root of the package into an
appropriate directory on the UNIX system which will be in the user’s path.

9. Rename the emacs.rc startup file to .emacsrc.

10. Make sure the copied executables have the proper permissions to allow them to be executed and read by the
target users.

At this point, MicroEMACS should be ready for use. Remember to issue a REHASH command if you want
to invoke it before logging out of the system immediately after building it.

2

Basic Concepts MicroEMACS Reference Manual

C h a p t e r 2C h a p t e r 2

B a s i c C o n c e p t sB a s i c C o n c e p t s

The current version of MicroEMACS is 4.0 (Fourth major re-write, initial public release), and for the rest of
this document, we shall simply refer to this version as “EMACS”. Any modifications for later versions will be in the
file README on the MicroEMACS distribution disk.

2 . 1 K e y s a n d t h e K e y b o a r d2 . 1 K e y s a n d t h e K e y b o a r d

Many times throughout this manual we will be talking about commands and the keys on the keyboard
needed to use them. There are a number of “special” keys which can be used and are listed here:

<NL> NewLine which is also called RETURN, ENTER, or <NL>, this key is used to end
different commands.

^ The control key can be used before any alphabetic character and some symbols. For
example, ^C means to hold down the <CONTROL> key and type the C key at the same
time.

^X The CONTROL-X key is used at the beginning of many different commands.

META or M- This is a special EMACS key used to begin many commands.This key is pressed and
then released before typing the next character. On most systems, this is the <ESC> key,
but it can be changed. (consult appendix E to learn what key is used for META on your
computer).

Whenever a command is described, the manual will list the actual keystrokes needed to execute it in
boldface using the above conventions, and also the name of the command in italics.

2 . 2 G e t t i n g S t a r t e d2 . 2 G e t t i n g S t a r t e d

In order to use EMACS, you must call it up from your system or computer’s command prompt. On UNIX
and MSDOS machines, just type “emacs” from the command prompt and follow it with the <RETURN> or <ENTER>
key (we will refer to this key as <NL> for “new-line” for the remainder of this manual). On the Macintosh, the Amiga,
the ATARI ST, and under OS/2, Windows 95, Windows NT and other icon based operating systems, double click on
the uEMACS icon. Shortly after this, a screen similar to the one below should appear.

2 . 3 P a r t s a n d P i e c e s2 . 3 P a r t s a n d P i e c e s

The screen is divided into a number of areas or windows. On some systems the top window contains a
function list of unshifted and shifted function keys. We will discuss these keys later. Below them is an EMACS mode
line which, as we will see, informs you of the present mode of operation of the editor—for example “(WRAP)” if you
set EMACS to wrap at the end of each line. Under the mode line is the text window where text appears and is
manipulated. Since each window has its own mode line, below the text window is it’s mode line. The last line of the
screen is the command line where EMACS takes commands and reports on what it is doing.

3

MicroEMACS Reference Manual Basic Concepts

===
f1 search-> f2 <-search | MicroEMACS: Text Editor
f3 hunt-> f4 <-hunt |

 f5 fkeys f6 help | Available function key Pages include:
f7 nxt wind f8 pg[] | WORD BOX

EMACS PASCAL C cObal Lisp
 f9 save f10 exit | [use the f8 key to load Pages]

===
MicroEMACS 4.0 () Function Keys

===

===
---- MicroEMACS 4.0 [13:28] L:1 C:0 () -- Main --------------------------------
===

Fig 1: EMACS screen on an IBM-PC

2 . 4 E n t e r i n g T e x t2 . 4 E n t e r i n g T e x t

Entering text in EMACS is simple. Type the following sentence fragment:

 Fang Rock lighthouse, center of a series of mysterious
 and

The text is displayed at the top of the text window. Now type:

 terrifying events at the turn of the century

Notice that some of your text has dissapeared off the left side of the screen. Don’t panic—your text is safe!!!
You’ve just discovered that EMACS doesn’t “wrap” text to the next line like most word processors unless you hit

 <NL>. But since EMACS is used for both word processing, and text editing, it has a bit of a dual personality. You can
change the way it works by setting various modes. In this case, you need to set WRAP mode, using the add-mode
command, by typing ^XM. The command line at the base of the screen will prompt you for the mode you wish to add.
Type wrap followed by the <NL> key and any text you now enter will be wrapped. However, the command doesn’t
wrap text already entered. To get rid of the long line, press and hold down the <BACKSPACE> key until the line is

 gone. Now type in the words you deleted, watch how EMACS goes down to the next line at the right time. (In some
versions of EMACS, WRAP is a default mode in which case you don’t have to worry about the instructions relating to
adding this mode.)

Now let’s type a longer insert. Hit <NL> a couple of times to tab down from the text you just entered. Now
type the following paragraphs. Press <NL> twice to indicate a paragraph break.

 Fang Rock lighthouse, center of a series of mysterious
 and terrifying events at the turn of the century, is
 built on a rocky island a few miles of the Channel
 coast. So small is the island that wherever you stand
 its rocks are wet with sea spray.

 The lighthouse tower is in the center of the island. A
 steep flight of steps leads to the heavy door in its
 base. Winding stairs lead up to the crew room.

4

Basic Concepts MicroEMACS Reference Manual

2 . 5 B a s i c c u r s o r m o v e m e n t2 . 5 B a s i c c u r s o r m o v e m e n t

Now let’s practice moving around in this text. To move the cursor back to the word “Winding,” enter M-B
previous-word. This command moves the cursor backwards by one word at a time. Note you have to press the key
combination every time the cursor steps back by one word. Continuously pressing META and toggling B produces an
error message. To move forward to the word “stairs” enter M-F next-word, which moves the cursor forward by one
word at a time.

Notice that EMACS commands are usually mnemonic—F for forward, B for backward, for example.

To move the cursor up one line, enter ^P previous-line, down one line ^N next-line. Practice this movement
by moving the cursor to the word “terrifying” in the second line.

The cursor may also be moved forward or backward in smaller increments. To move forward by one
character, enter ^F forward-character , to move backward, ^B backward-character. EMACS also allows you to
specify a number which is normally used to tell a command to execute many times. To repeat most commands, press
META and then the number before you enter the command. Thus, the command META 5 ^F (M-5^F) will move the
cursor forward by five characters. Try moving around in the text by using these commands. For extra practice, see how
close you can come to the word “small” in the first paragraph by giving an argument to the commands listed here.

Two other simple cursor commands that are useful to help us move around in the text are M-N next-
paragraph which moves the cursor to the second paragraph, and M-P previous-paragraph which moves it back to the
previous paragraph. The cursor may also be moved rapidly from one end of the line to the other. Move the cursor to
the word “few” in the second line. Press ^A beginning-of-line. Notice the cursor moves to the word “events” at the
beginning of the line. Pressing ^E end-of-line moves the cursor to the end of the line.

Finally, the cursor may be moved from any point in the file to the end or beginning of the file. Entering M->
end-of-file moves the cursor to the end of the buffer, M-< beginning-of-file to the first character of the file.

On the IBM-PC, the ATARI ST and many other machines, the cursor keys can also be used to move the
cursor.

Practice moving the cursor in the text until you are comfortable with the commands we’ve explored in this
chapter.

2 . 6 S a v i n g y o u r t e x t2 . 6 S a v i n g y o u r t e x t

When you’ve finished practicing cursor movement, save your file. Your file currently resides in a BUFFER.
The buffer is a temporary storage area for your text, and is lost when the computer is turned off. You can save the
buffer to a file by entering ^X^S save-file. Notice that EMACS informs you that your file has no name and will not let
you save it.

On the IBM-PC and other machines with function keys, the F9 key can often be used do the same as ^X^S.

To save your buffer to a file with a different name than it’s current one (which is empty), press ^X^W write-
file. EMACS will prompt you for the filename you wish to write. Enter the name fang.txt and press return. On a
micro, the drive light will come on, and EMACS will inform you it is writing the file. When it finishes, it will inform
you of the number of lines it has written to the disk.

Congratulations!! You’ve just saved your first EMACS file!

5

MicroEMACS Reference Manual Basic Concepts

C h a p t e r 2 S u m m a r yC h a p t e r 2 S u m m a r y

In chapter 2, you learned how to enter text, how to use wrap mode, how to move the cursor, and to save a
 buffer. The following is a table of the commands covered in this chapter and their corresponding key bindings:

Key Binding Keystroke Effect___ ______ ________ _____ _ _ _

 abort-command ^G aborts current command

add-mode ^XM allows addition of EMACS
mode such as WRAP

backward-character ^B moves cursor left one character

beginning-of-file M-< moves cursor to beginning of file

beginning-of-line ^A moves cursor to beginning of line

end-of-file M-> moves cursor to end of file

end-of-line ^E moves cursor to end of line

forward-character ^F moves cursor right one character

next-line ^N moves cursor to next line

next-paragraph M-N moves cursor to next paragraph

next-word M-F moves cursor forward one word

previous-line ^P moves cursor backward by one line

previous-paragraph M-P moves cursor to previous paragraph

previous-word M-B moves cursor backward by one word

save-file ^X^S saves current buffer to a file

write-file ^X^W save current buffer under a new name

6

Basic Editing—Simple Insertions and Deletions MicroEMACS Reference Manual

C h a p t e r 3C h a p t e r 3

B a s i c E d i t i n g — S i m p l e I n s e r t i o n s a n d D e l e t i o n sB a s i c E d i t i n g — S i m p l e I n s e r t i o n s a n d D e l e t i o n s

3 . 1 A W o r d A b o u t W i n d o w s , B u f f e r s , S c r e e n s , a n d M o d e s3 . 1 A W o r d A b o u t W i n d o w s , B u f f e r s , S c r e e n s , a n d M o d e s

In the first chapter, you learned how to create and save a file in EMACS. Let’s do some more editing on this
file. Call up emacs by typing in the following command.

emacs fang.txt

On icon oriented systems, double click on the uEMACS icon, usually a file dialog box of some sort will
appear. Choose FANG.TXT from the appropriate folder.

Shortly after you invoke EMACS, the text should appear on the screen ready for you to edit. The text you
are looking at currently resides in a buffer. A buffer is a temporary area of computer memory which is the primary
unit internal to EMACS — this is the place where EMACS goes to work. The mode line at the bottom of the screen
lists the buffer name, FANG.TXT and the name of the file with which this buffer is associated, FANG.TXT

The computer talks to you through the use of its screen. This screen usually has an area of 24 lines each of
80 characters across. You can use EMACS to subdivide the screen into several separate work areas, or windows, each
of which can be ‘looking into’ different files or sections of text. Using windows, you can work on several related texts
at one time, copying and moving blocks of text between windows with ease. To keep track of what you are editing,
each window is identified by a mode line on the last line of the window which lists the name of the buffer which it is
looking into, the file from which the text was read, and how the text is being edited.

An EMACS mode tells EMACS how to deal with user input. As we have already seen, the mode ‘WRAP’
controls how EMACS deals with long lines (lines with over 79 characters) while the user is typing them in. The
‘VIEW’ mode, allows you to read a file without modifying it. Modes are associated with buffers and not with files;
hence, a mode needs to be explicitly set or removed every time you edit a file. A new file read into a buffer with a
previously specified mode will be edited under this mode. If you use specific modes frequently, EMACS allows you to
set the modes which are used by all new buffers, called global modes.

3 . 2 I n s e r t i o n s3 . 2 I n s e r t i o n s

Your previously-saved text should look like this:

Fang Rock lighthouse, center of a series of mysterious
and terrifying events at the turn of the century, is
built on a rocky island a few miles of the Channel
coast. So small is the island that wherever you stand
its rocks are wet with sea spray.

The lighthouse tower is in the center of the island. A
steep flight of steps leads to the heavy door in its
base. Winding stairs lead up to the crew room.

Let’s assume you want to add a sentence in the second paragraph after the word “base.” Move the cursor
until it is on the “W” of “Winding”. Now type the following:

This gives entry to the lower floor where the big steam
generator throbs steadily away, providing power for the
electric lantern.

7

MicroEMACS Reference Manual Basic Editing—Simple Insertions and Deletions

If the line fails to wrap and you end up with a ‘$’ sign in the right margin, just enter M-Q fill-paragraph to
reformat the paragraph. This new command attempts to fill out a paragraph. Long lines are divided up, and words are
shuffled around to make the paragraph look nicer.

Notice that all visible EMACS characters are self-inserting — all you had to do was type the characters to
 insert and the existing text made space for it. With a few exceptions discussed later, all non-printing characters (such

as control or escape sequences) are commands. To insert spaces, simply use the space bar. Now move to the first line
of the file and type ^O open-line (Oh, not zero). You’ve just learned how to insert a blank line in your text.

3 . 3 D e l e t i o n s3 . 3 D e l e t i o n s

EMACS offers a number of deletion options. For example, move the cursor until it’s under the period at the
end of the insertion you just did. Press the backspace key. Notice the “n” on “lantern” disappeared. The backspace

 implemented on EMACS is called a destructive backspace—it removes text immediately before the current cursor
 position from the buffer. Now type ^H delete-previous-character. Notice that the cursor moves back and obliterates
 the “r”—either command will backspace the cursor.

Type in the two letters you erased to restore your text and move the cursor to the beginning of the buffer
M-> beginning-of-file. Move the cursor down one line to the beginning of the first paragraph.

To delete the forward character, type ^D delete-next-character. The “F” of “Fang” disappears. Continue to
 type ^D until the whole word is erased EMACS also permits the deletion of larger elements of text. Move the cursor to

the word “center” in the first line of text. Pressing M-<backspace> delete-previous-word kills the word immediately
 before the cursor. M-^H has the same effect.

Notice that the commands are very similar to the control commands you used to delete individual letters. As
a general rule in EMACS, control sequences affect small areas of text, META sequences larger areas. The word

 forward of the cursor position can therefore be deleted by typing M-D delete-next-word. Now let’s take out the
 remainder of the first line by typing ^K kill-to-end-of-line. You now have a blank line at the top of your screen.
 Typing ^K again or ^X^O delete-blank-lines deletes the blank line and flushes the second line to the top of the text.

Now exit EMACS by typing ^X^C exit-emacs. Notice EMACS reminds you that you have not saved your buffer.
 Ignore the warning and exit. This way you can exit EMACS without saving any of the changes you just made.

8

Basic Editing—Simple Insertions and Deletions MicroEMACS Reference Manual

C h a p t e r 3 S u m m a r yC h a p t e r 3 S u m m a r y

In Chapter 3, you learned about the basic ‘building blocks’ of an EMACS text file—buffers, windows, and
files.

Key binding Keystroke Effect___ ______ ________ _____ _ _ _
 delete-previous-character

^H deletes character immediately before
the current cursor position

delete-next-character ^D deletes character immediately after
current cursor position

delete-previous-word M-^H deletes word immediately before
current cursor position

delete-next-word M-D deletes word immediately after
current cursor position

kill-to-end-of-line ^K deletes from current cursor
position to end of line

insert-space ^C inserts a space to right of cursor

open-line ^O inserts blank line

delete-blank-lines ^X^O removes blank line

exit-emacs ^X^C exits emacs

9

MicroEMACS Reference Manual Using Regions

C h a p t e r 4C h a p t e r 4

U s i n g R e g i o n sU s i n g R e g i o n s

4 . 1 D e fi n i n g a n d D e l e t i n g a R e g i o n4 . 1 D e fi n i n g a n d D e l e t i n g a R e g i o n

At this point its time to familiarize ourselves with two more EMACS terms—the point and the mark. The
 point is located directly behind the current cursor position. The mark (as we shall see shortly) is user defined. These
 two elements together are called the current region and limit the region of text on which EMACS performs many of

its editing functions.

Let’s begin by entering some new text. Don’t forget to add wrap mode if its not set on this buffer. Start
 EMACS and open a file called PUBLISH.TXT. Type in the following text:

 One of the largest growth areas in personal computing is
 electronic publishing. There are packages available for
 practically every machine from elegantly simple programs
 for the humble Commodore 64 to sophisticated
 professional packages for PC and Macintosh computers.

 Electronic publishing is as revolutionary in its way as
 the Gutenburg press. Whereas the printing press allowed
 the mass production and distribution of the written
 word, electronic publishing puts the means of production
 in the hands of nearly every individual. From the class
 magazine to the corporate report, electronic publishing
 is changing the way we produce and disseminate
 information.

 Personal publishing greatly increases the utility of
 practically every computer. Thousands of people who
 joined the computer revolution of this decade only to
 hide their machines unused in closets have discovered a
 new use for them as dedicated publishing workstations.

Now let’s do some editing. The last paragraph seems a little out of place. To see what the document looks
 like without it we can cut it from the text by moving the cursor to the beginning of the paragraph. Enter M-<space>

set-mark. EMACS will respond with “[Mark set]”. Now move the cursor to the end of the paragraph. You have just
defined a region of text. To remove this text from the screen, type ^W kill-region. The paragraph disappears from the
screen.

On further consideration, however, perhaps the paragraph we cut wasn’t so bad after all. The problem may
have been one of placement. If we could tack it on to the end of the first paragraph it might work quite well to support
and strengthen the argument. Move the cursor to the end of the first paragraph and enter ^Y yank . Your text should

 now look like this:

10

Using Regions MicroEMACS Reference Manual

One of the largest growth areas in personal computing is
electronic publishing. There are packages available for
practically every machine from elegantly simple programs
for the humble Commodore 64 to sophisticated
professional packages for PC and Macintosh computers.
Personal publishing greatly increases the utility of
practically every computer. Thousands of people who
joined the computer revolution of this decade only to
hide their machines unused in closets have discovered a
new use for them as dedicated publishing workstations.

Electronic publishing is as revolutionary in its way as
the Gutenburg press. Whereas the printing press allowed
the mass production and distribution of the written
word, electronic publishing puts the means of production
in the hands of nearly every individual. From the class
magazine to the corporate report, electronic publishing
is changing the way we produce and disseminate
information.

4 . 2 Y a n k i n g a R e g i o n4 . 2 Y a n k i n g a R e g i o n

The text you cut initially didn’t simply just disappear, it was cut into a buffer that retains the ‘killed’ text
appropriately called the kill buffer. ^Y “yanks” the text back from this buffer into the current buffer. If you have a
long line (indicated, remember, by the “$” sign), simply hit M-Q to reformat the paragraph.

There are other uses to which the kill buffer can be put. Using the method we’ve already learned, define the
last paragraph as a region. Now type M-W copy-region. Nothing seems to have happened; the cursor stays blinking at
the point. But things have changed, even though you may not be able to see any alteration.

To see what has happened to the contents of the kill buffer, move the cursor down a couple of lines and
“yank” the contents of the kill buffer back with ^Y. Notice the last paragraph is now repeated. The region you defined
is “tacked on” to the end of your file because M-W copies a region to the kill buffer while leaving the original text in
your working buffer. Some caution is needed however, because the contents of the kill buffer are updated when you
delete any regions, lines or words. If you are moving large quantities of text, complete the operation before you do any
more deletions or you could find that the text you want to move has been replaced by the most recent deletion.
Remember—a buffer is a temporary area of computer memory that is lost when the machine is powered down or
switched off. In order to make your changes permanent, they must be saved to a file before you leave EMACS. Let’s
delete the section of text we just added and save the file to disk.

11

MicroEMACS Reference Manual Using Regions

C h a p t e r 4 S u m m a r yC h a p t e r 4 S u m m a r y

In Chapter 4, you learned how to achieve longer insertions and deletions. The EMACS terms point and
mark were introduced and you learned how to manipulate text with the kill buffer.

Key Binding Keystroke Effect___ ______ ________ _____ _ _ _

 set-mark M-<space> Marks the beginning of a region

delete-region ^W Deletes region between point and mark and
places it in KILL buffer

copy-region M-W Copies text between point and mark into
KILL buffer

yank-text ^Y Inserts a copy of the KILL buffer into
current buffer at point

12

Search and Replace MicroEMACS Reference Manual

C h a p t e r 5C h a p t e r 5

S e a r c h a n d R e p l a c eS e a r c h a n d R e p l a c e

5 . 1 F o r w a r d S e a r c h5 . 1 F o r w a r d S e a r c h

Load EMACS and bring in the file you just saved. Your file should look like the one below.

One of the largest growth areas in personal computing is
electronic publishing. There are packages available for
practically every machine from elegantly simple programs
for the humble Commodore 64 to sophisticated
professional packages for PC and Macintosh computers.
Personal publishing greatly increases the utility of
practically every computer. Thousands of people who
joined the computer revolution of this decade only to
hide their machines unused in closets have discovered a
new use for them as dedicated publishing workstations.

Electronic publishing is as revolutionary in its way as
the Gutenburg press. Whereas the printing press allowed
the mass production and distribution of the written
word, electronic publishing puts the means of production
in the hands of nearly every individual. From the class
magazine to the corporate report, electronic publishing
is changing the way we produce and disseminate
information.

Let’s use EMACS to search for the word “revolutionary” in the second paragraph. Because EMACS
searches from the current cursor position toward the end of buffers, and we intend to search forward, move the cursor
to the beginning of the text. Enter ^S search-forward. Note that the command line now reads

“Search [] <META>:”

E M A C S i s p r o m p t i n g y o u t o e n t e r t h e s e a r c h s t r i n g — t h e t e x t y o u w a n t t o fi n d . E n t e r t h e w o r d
revolutionary and hit the META key. The cursor moves to the end of the word “revolutionary.”

Notice that you must enter the <META> key to start the search. If you simply press <NL> the command line
responds with “<NL>”. Although this may seem infuriating to users who are used to pressing the return key to
execute any command, EMACS’ use of <META> to begin searches allows it to pinpoint text with great accuracy.
After every line wrap or carriage return, EMACS ‘sees’ a new line character (<NL>). If you need to search for a word
at the end of a line, you can specify this word uniquely in EMACS.

In our sample text for example, the word “and” occurs a number of times, but only once at the end of a line.
To search for this particular occurrence of the word, move the cursor to the beginning of the buffer and type ^S.
Notice that EMACS stores the last specified search string as the default string. If you press <META> now, EMACS
will search for the default string, in this case, “revolutionary.”

To change this string so we can search for our specified “and” simply enter the word and followed by
<NL>. The command line now shows:

“search [and<NL>]<META>:”

Press <META> and the cursor moves to “and” at the end of the second last line.

13

MicroEMACS Reference Manual Search and Replace

5 . 2 E x a c t S e a r c h e s5 . 2 E x a c t S e a r c h e s

Most of the time EMACS does not take the case of the strings being searched for into account. Thus And
matches AND and and. However, if the mode EXACT is active in the current buffer, EMACS will only look for

 matches with the same upper and lower case for each character. Thus, for example you could search for Publishing as
distinct from publishing.

5 . 3 B a c k w a r d S e a r c h5 . 3 B a c k w a r d S e a r c h

Backward searching is very similar to forward searching except that it is implemented in the reverse
 direction. To implement a reverse search, type ^R search-reverse. Because EMACS makes no distinction between
 forward and backward stored search strings, the last search item you entered appears as the default string. Try
 searching back for any word that lies between the cursor and the beginning of the buffer. Notice that when the item is

found, the point moves to the beginning of the found string (i.e., the cursor appears under the first letter of the search
item).

Practice searching for other words in your text.

5 . 4 S e a r c h i n g a n d R e p l a c i n g5 . 4 S e a r c h i n g a n d R e p l a c i n g

Searching and replacing is a powerful and quick way of making changes to your text. Our sample text is
 about electronic publishing, but the correct term is ‘desktop’ publishing. To make the necessary changes we need to
 replace all occurrences of the word “electronic” with “desktop.” First, move the cursor to the top of the current buffer

with the M-< command. Then type M-R replace-string. The command line responds:

“Replace []<META>:”

where the square brackets enclose the default string. Type the word electronic and hit <META>. The
 command line responds:

“with []<META>”

type desktop<META>. EMACS replaces all instances of the original word with your revision. Of course,
 you will have to capitalize the first letter of “desktop” where it occurs at the beginning of a sentence.

You have just completed an unconditional replace. In this operation, EMACS replaces every instance of
 the found string with the replacement string.

5 . 5 Q u e r y - R e p l a c e5 . 5 Q u e r y - R e p l a c e

You may also replace text on a case by case basis. The M-^R query-replace-string command causes
 EMACS to pause at each instance of the found string.

For example, assume we want to replace some instances of the word “desktop” with the word “personal.” Go
back to the beginning of the current buffer and enter the M-^R query-replace command. The procedure is very similar
to that which you followed in the unconditional search/replace option. When the search begins however, you will

 notice that EMACS pauses at each instance of “publishing” and asks whether you wish to replace it with the
 replacement string. You have a number of options available for response:

Response Effect_______ _____ _
Y(es) Make the current replacement and skip to the next

occurrence of the search string

N(o) Do not make this replacement but continue

! Do the rest of the replacements with no more queries

U(ndo) Undo just the last replacement and query for it
again (This can only go back ONE time)

14

Search and Replace MicroEMACS Reference Manual

^G Abort the replacement command (This action does not
undo previously-authorized replacements

. Same effect as ^G, but cursor returns to the point at
which the replacement command was given

? This lists help for the query replacement command

Practice searching and searching and replacing until you feel comfortable with the commands and their
effects.

15

MicroEMACS Reference Manual Search and Replace

C h a p t e r 5 S u m m a r yC h a p t e r 5 S u m m a r y

In this chapter, you learned how to search for specified strings of text in EMACS. The chapter also dealt
 with searching for and replacing elements within a buffer.

Key Binding Keystroke Effect___ ______ ________ _____ _ _ _

 search-forward ^S Searches from point to end of buffer.
Point is moved from current location to
the end of the found string

search-backward ^R Searches from point to beginning of buffer.
Point is moved from current location to
beginning of found string

replace M-R Replace ALL occurrences of search string with
specified (null) string from point to the
end of the current buffer

query-replace M-^R As above, but pause at each found string
and query for action

16

Windows MicroEMACS Reference Manual

C h a p t e r 6C h a p t e r 6

W i n d o w sW i n d o w s

6 . 1 C r e a t i n g W i n d o w s6 . 1 C r e a t i n g W i n d o w s

We have already met windows in an earlier chapter. In this chapter, we will explore one of EMACS’ more
powerful features — text manipulation through multiple windowing. Windows offer you a powerful and easy way to
edit text. By manipulating a number of windows and buffers on the screen simultaneously, you can perform complete
edits and revisions on the computer screen while having your draft text or original data available for reference in
another window.

You will recall that windows are areas of buffer text that you can see on the screen. Because EMACS can
support several screen windows simultaneously you can use them to look into different places in the same buffer. You
can also use them to look at text in different buffers. In effect, you can edit several files at the same time.

Let’s invoke EMACS and pull back our file on desktop publishing by typing

emacs publish.txt

When the text appears, type the ^X2 split-current-window command. The window splits into two windows.
The window where the cursor resides is called the current window — in this case the bottom window. Notice that
each window has a text area and a mode line. The command line is however, common to all windows on the screen.

The two windows on your screen are virtually mirror images of each other because the new window is
opened into the same buffer as the one you are in when you issue the open-window command. All commands issued to
EMACS are executed on the current buffer in the current window.

To move the cursor to the upper window (i.e., to make that window the current window, type ^XP previous-
window. Notice the cursor moves to the upper or previous window. Entering ^XO next-window moves to the next
window. Practice moving between windows. You will notice that you can also move into the Function Key menu by
entering these commands.

Now move to the upper window. Let’s open a new file. On the EMACS disk is a tutorial file. Let’s call it
into the upper window by typing:

^X^F

and press return.

Enter the filename emacs.tut.

In a short time, the tutorial file will appear in the window. We now have two windows on the screen, each
looking into different buffers. We have just used the ^X^F find-file command to find a file and bring it into our current
window.

You can scroll any window up and down with the cursor keys, or with the commands we’ve learned so far.
However, because the area of visible text in each window is relatively small, you can scroll the current window a line
at a time.

Type ^X^N move-window-down

The current window scrolls down by one line — the top line of text scrolls out of view, and the bottom line
moves towards the top of the screen. You can imagine, if you like, the whole window slowly moving down to the end
of the buffer in increments of one line. The command ^X^P move-window-up scrolls the window in the opposite
direction.

As we have seen, EMACS editing commands are executed in the current window, but the program does
support a useful feature that allows you to scroll the next window. M-^Z scroll-next-up scrolls the next window up,

17

MicroEMACS Reference Manual Windows

M-^V scroll-next-down scrolls it downward. From the tutorial window, practice scrolling the window with the
 desktop publishing text in it up and down.

When you’re finished, exit EMACS without saving any changes in your files.

Experiment with splitting the windows on your screen. Open windows into different buffers and experiment
with any other files you may have. Try editing the text in each window, but don’t forget to save any changes you want
to keep — you still have to save each buffer separately.

6 . 2 D e l e t i n g W i n d o w s6 . 2 D e l e t i n g W i n d o w s

Windows allow you to perform complex editing tasks with ease. However, they become an inconvenience
 when your screen is cluttered with open windows you have finished using. The simplest solution is to delete unneeded

windows. The command ^X0 delete-window will delete the window you are currently working in and move you to the
next window.

If you have a number of windows open, you can delete all but the current window by entering ^X1 delete-
other-windows.

6 . 3 R e s i z i n g W i n d o w s6 . 3 R e s i z i n g W i n d o w s

During complex editing tasks, you will probably find it convenient to have a number of windows on the
 screen simultaneously. However this situation may present inconveniences because the more windows you have on the

screen the smaller they are; in some cases, a window may show only a couple of lines of text. To increase the
 flexibility and utility of the window environment, EMACS allows you to resize the window you are working in
 (called, as you will recall, the current window) to a convenient size for easier editing, and then shrink it when you no

longer need it to be so large.

Let’s try an example. Load in any EMACS text file and split the current window into two. Now type
^X^(Shift-6), grow-window. Your current window should be the lower one on the screen. Notice that it increases in

 size upwards by one line. If you are in the upper window, it increases in size in a downward direction. The command
^X^Z, shrink-window correspondingly decreases window size by one line at a time.

EMACS also allows you to resize a window more precisely by entering a numeric argument specifying the
size of the window in lines. To resize the window this way, press the META key and enter a numeric argument

 (remember to keep it smaller than the number of lines on your screen display) then press ^XW resize-window. The
 current window will be enlarged or shrunk to the number of lines specified in the numeric argument. For example
 entering:

 M-8 ^XW

will resize the current window to 8 lines.

6 . 4 R e p o s i t i o n i n g w i t h i n a W i n d o w6 . 4 R e p o s i t i o n i n g w i t h i n a W i n d o w

The cursor may be centered within a window by entering M-! or M-^L redraw-display. This command is
 especially useful in allowing you to quickly locate the cursor if you are moving frequently from window to window.
 You can also use this command to move the line containing the cursor to any position within the current window. This

is done by using a numeric argument before the command. Type M-<n> M-^L where <n> is the number of the line
 within the window that you wish the current line to be displayed.

The ^L clear-and-redraw command is useful for ‘cleaning up’ a ‘messy’ screen that can result of using
 EMACS on a mainframe system and being interrupted by a system message.

18

Windows MicroEMACS Reference Manual

C h a p t e r 6 s u m m a r yC h a p t e r 6 s u m m a r y

In Chapter 6 you learned how to manipulate windows and the editing flexibility they offer.

Key Binding Keystroke Effect___ ______ ________ _____ _ _ _

 open-window ^X2 Splits current window into two windows if
space available

close-windows ^X1 Closes all windows except current window

next-window ^XO[oh] Moves point into next (i.e. downward) window

previous-window ^XP Moves point to previous (i.e. upward) window

move-window-down ^X^N Scrolls current window down one line

move-window-up ^X^P Scrolls current window up one line

redraw-display M ! or Window is moved so line with point
M ^L (with cursor) is at center of window

grow-window M-X ^ Current window is enlarged by one
line and nearest window is shrunk by
one line

shrink-window ^X^Z Current window is shrunk by one line
and nearest window is enlarged by one line

clear-and-redraw ^L Screen is blanked and redrawn. Keeps
screen updates in sync with your commands

scroll-next-up M-^Z Scrolls next window up by one line

scroll-next-down M-^V Scrolls next window down by one line

delete-window ^X0 Deletes current window

delete-other-windows ^X1 Deletes all but current window

resize-window ^X^W Resizes window to a given numeric argument

19

MicroEMACS Reference Manual Using a Mouse

C h a p t e r 7C h a p t e r 7

U s i n g a M o u s eU s i n g a M o u s e

On computers equipped with a mouse, the mouse can usually be used to make editing easier. If your
 computer has a mouse, let’s try using it. Start MicroEMACS by typing:

emacs publish.txt

This brings EMACS up and allows it to edit the file from the last chapter. If the function key window is
 visible on the screen, press the F5 key to cause it to disappear. Now use the ^X2 split-current-window command to
 split the screen into two windows. Next use the ^X^F find-file command to read in the fang.txt file. Now your screen

should have two windows looking into two different files.

Grab the mouse and move it around. On the screen an arrow, or block of color appears. This is called the
 mouse cursor and can be positioned on any character on the screen. On some computers, positioning the mouse cursor

in the extreme upper right or left corner may bring down menus which allow you to access that computers utilities,
 sometimes called Desk Accessories.

7 . 1 M o v i n g a r o u n d w i t h t h e m o u s e7 . 1 M o v i n g a r o u n d w i t h t h e m o u s e

Using the mouse button (or the left button if the mouse has more than one), position the mouse over some
 character in the current window. Click the mouse button once. The point will move to where the mouse cursor is. If

you place the mouse cursor past the end of a line, the point will move to the end of that line.

Move the mouse cursor into the other window and click on one of the characters there. MicroEMACS will
 automatically make this window the current window (notice that the mode line changes) and position the point to the

mouse cursor. This makes it very easy to use the mouse to switch to a different window quickly.

7 . 2 D r a g g i n g a r o u n d7 . 2 D r a g g i n g a r o u n d

Besides just using the mouse to move around on the screen, you can use the same button to move text. Move
the mouse cursor to a character in one of the windows, and click down… but don’t let the button up yet! The point will
move to where the mouse cursor is. Now move the mouse cursor up or down on the screen, and release the button. The
point will again move to where the mouse cursor is, but this time it will bring the text under it along for the ride. This
is called dragging, and is how you can make the text appear just where you want it to. If you try to drag text out of the
current window, EMACS will ignore your attempt and leave the point where you first clicked down.

Now, click down on a word in one of the windows, and drag it directly to the left. Release the button and
 watch as the entire window slides, or scrolls to the left. The missing text has not been deleted, it is simply not visible,

off the left hand side of the screen. Notice the mode line has changed and now looks similar to this:

==== MicroEMACS 4.0 [15:12] [<12] L:4 C:23 () == fang.txt == File: fang.txt ==============

The number insided the brackets [] shows that the screen is now scrolled 12 characters from the left margin.

Now grab the same text again, and drag it to the right, pulling the rest of the text back into the current
 window. The [<] field will disappear, meaning that the window is no longer scrolled to the left. This feature is very
 useful for looking at wide charts and tables. Remember, MicroEMACS will only scroll the text in the current window

sideways if you drag it straight to the side, otherwise it will drag the text vertically.

Now, place the mouse cursor over a character on the upper mode line, click down, move the mouse cursor
 up or down a few lines and let go of the button. The mode line moves to where you dragged it, changing the size of

the windows above and below it. If you try to make a window with less than one line, EMACS will not let you.
 Dragging the mode lines can make it very fast and easy for you to rearrange the windows as you would like.

20

Using a Mouse MicroEMACS Reference Manual

If you have a number of different windows visible on the screen, positioning the mouse over the mode line
of one window and clicking the right mouse button will cause that window to be deleted.

7 . 3 C u t a n d P a s t e7 . 3 C u t a n d P a s t e

If your mouse has two buttons, then you can use the right button to do some other things as well. Earlier, we
learned how to define a region by using the M-<space> set-mark command. Now, position the mouse over at the
beginning of a region you would like to copy. Next click and hold down the right mouse button. Notice that the point
jumps to the mouse cursor and EMACS reports “[Mark Set]”. Holding the button down move the mouse to the end of
the text you wish to copy and release the mouse button. Emacs reports “[Region Copied]” to let you know it has
copied the region into the KILL buffer. This has done the same job as the M-W copy-region command.

If you now click the right mouse button, without moving the mouse, the region you defined dissapear, being
cut from the current buffer. This works just like the ^W kill-region command.

If you move the mouse away from where you cut the text, and click the right mouse button down and up
without moving the mouse, the text in the KILL buffer gets inserted, or pasted into the current buffer at the point.

7 . 4 S c r e e n s7 . 4 S c r e e n s

MicroEMACS can use more than one screen at once. Each screen is a collection of windows along with a
mode line. These screens usually fill the terminal or computer screen on text based systems, but can also be held in
different windows on graphically based systems like MicroSoft Windows, OS/2, the Macintosh Finder and X-
Windows. Don’t be confused by the two different uses of the term “window”. Inside EMACS style editors, a window
lets you view part of a buffer. Under graphical operating systems, a window holds a “virtual terminal”, allowing you
to manipulate more than one job, editing session or program at once. Within MicroEMACS, these operating system
windows are called screens. All these screens are displayed on your current desktop.

7 . 5 R e s i z i n g a S c r e e n7 . 5 R e s i z i n g a S c r e e n

You can change the size of a screen. Move the mouse to the last position of the command line. Press the left
mouse button down. Holding it, move the mouse to the place you want the new lower right corner. Release the mouse.
The desktop redraws, with your newly resized screen. MicroEMACS will ignore size changes that can not be done,
like attempting to pull the lower left corner above the upper right corner of the current screen.

7 . 6 M o v i n g a S c r e e n7 . 6 M o v i n g a S c r e e n

To change where on the desktop a screen is placed, move the mouse to the upper right corner of the screen,
press the left mouse button down, move the mouse and release it where you want the screen displayed. Again,
MicroEMACS will ignore placements that can not be done.

7 . 7 C r e a t i n g a S c r e e n7 . 7 C r e a t i n g a S c r e e n

Creating a new screen is just like moving a screen, but using the right button. Move to the upper right of an
existing screen, press the right mouse button down, and move the mouse, releasing the button where the new screen
should appear. A new screen will have a single window, containing the contents of the current window in the copied
screen, and will have that window’s colors. The new screen will have the copied screen’s size.

7 . 8 S w i t c h i n g t o a S c r e e n7 . 8 S w i t c h i n g t o a S c r e e n

This is simple. Any mouse command can be done in any screen by placing the mouse on a visible part of the
screen and clicking. The last screen the mouse is used on comes to front and is the current screen. Also, the A-C cycle-
screens command brings the rearmost screen to front.

21

MicroEMACS Reference Manual Using a Mouse

7 . 9 D e l e t i n g a S c r e e n7 . 9 D e l e t i n g a S c r e e n

Place the mouse on the command line of the screen you want to delete. Click the right mouse button, the
 screen will disapear. If you delete the only remaining screen on the desktop, MicroEMACS will exit.

7 . 1 0 M o u s i n g u n d e r W I N D O W S 9 57 . 1 0 M o u s i n g u n d e r W I N D O W S 9 5

The Windows 95 version of MicroEMACS loads a special macro when it comes up which makes the
 mousing more similar to the CUA standard. The left mouse button is used to outline regions which then can be cut and

pasted to and from the clipboard from the menus. Text placed in the clipboard can be pasted to other documents.
If you wish to disable this and use the standard EMACS mousing, rename CUA.CMD in the installation

 directory to another name.

22

Using a Mouse MicroEMACS Reference Manual

C h a p t e r 7 S u m m a r yC h a p t e r 7 S u m m a r y

In Chapter 7, you learned how to use the mouse to move the point, switch windows, drag text, and resize
windows. You also learned how to use the right mouse button in order to copy and delete regions and yank them back
at other places. And lastly, you learned how to control multiple screens with the mouse.

23

MicroEMACS Reference Manual Using a Mouse

Action Mouse Directions_____ _____ _________ _ _

 Move Cursor position mouse cursor over desired location
click down and up with left button

Drag Text position mouse cursor over desired text
click left button down
move to new screen location for text
release mouse button

Resize Windows position mouse cursor over mode line to move
click left button down
move to new location for mode line
release mouse button

Delete Window position mouse cursor over mode line of window to delete
click right mouse button

Activate Screen Move mouse over existing screen
click left button down and up

Resize Screen position mouse cursor over last character on message line
click left button down
move to new lower right corner of screen
release mouse button

Copy Region position mouse at beginning of region
click right button down
move to end of region
release mouse button

Cut Region position mouse at beginning of region
click right button down
move to end of region
release mouse button
click right button down and up

Paste Region position mouse at place to paste
click right button down and up

Create Screen position mouse at upper left corner of existing screen
click right button down
move to position of new screen
release mouse button

Resize Screen position mouse at lower right corner of screen
click left button down
move to new lower left corner
release mouse button

Move Screen position mouse at upper right corner of screen
click left button down
move to new screen position
release mouse button

Delete Screen position to command line of existing screen
click right button down
release mouse button

24

Buffers MicroEMACS Reference Manual

C h a p t e r 8C h a p t e r 8

B u f f e r sB u f f e r s

We have already learned a number of things about buffers. As you will recall, they are the major internal
entities in EMACS — the place where editing commands are executed. They are characterized by their names, their
modes, and by the file with which they are associated. Each buffer also “remembers” its mark and point. This
convenient feature allows you to go to other buffers and return to the original location in the “current” buffer.

Advanced users of EMACS frequently have a number of buffers in the computer’s memory simultaneously.
In the last chapter, for example, you opened at least two buffers — one into the text you were editing, and the other
into the EMACS on-line tutorial. If you deal with complex text files — say, sectioned chapters of a book, you may
have five or six buffers in the computer’s memory. You could select different buffers by simply calling up the file with
^X^F find-file, and let EMACS open or reopen the buffer. However, EMACS offers fast and sophisticated buffering
techniques that you will find easy to master and much more convenient to use.

Let’s begin by opening three buffers. You can open any three you choose, for example call the following
files into memory: fang.txt, publish.txt, and emacs.tut in the order listed here. When you’ve finished this process,
you’ll be looking at a screen showing the EMACS tutorial. Let’s assume that you want to move to the fang.txt buffer.
Enter:

^XX next-buffer

This command moves you to the next buffer. Because EMACS cycles through the buffer list, which is____
alphabetized, you will now be in the fang.txt buffer. Using ^XX again places you in the publish.txt buffer. If you are
on a machine that supports function keys, using ^XX again places you in the Function Keys buffer. Using ^XX one
last time cycles you back to the beginning of the list.

If you have a large number of buffers to deal with, this cycling process may be slow and inconvenient. The
command ^XB select-buffer allows you to specify the buffer you wish to be switched to. When the command is
entered, EMACS prompts, “Use buffer:”. Simply enter the buffer name (NOT the file name), and that buffer will then
become the current buffer. If you type in part of the file name and press the space bar, EMACS will attempt to
complete the name from the list of current buffers. If it succeeds, it will print the rest of the name and you can hit
<NL> to switch to that buffer. If EMACS beeps the bell, there is no such buffer, and you may continue editing the
name on the command line.

M u l t i p l e b u f f e r m a n i p u l a t i o n a n d e d i t i n g i s a c o m p l e x a c t i v i t y , a n d y o u w i l l p r o b a b l y fi n d i t v e r y
inconvenient to re-save each buffer as you modify it. The command ^X^B list-buffers creates a new window that
gives details about all the buffers currently known to EMACS. Buffers that have been modified are identified by the
“buffer changed” indicator (an asterisk in the second column). You can thus quickly and easily identify buffers that
need to be saved to files before you exit EMACS. The buffer window also provides other information — buffer
specific modes, buffer size, and buffer name are also listed. To close this window, simply type the close-windows
command, ^X1.

To delete any buffer, type ^XK delete-buffer. EMACS prompts you “Kill buffer:”. Enter the buffer name
you want to delete. As this is destructive command, EMACS will ask for confirmation if the buffer was changed and
not saved. Answer Y(es) or N(o). As usual ^G cancels the command.

25

MicroEMACS Reference Manual Buffers

C h a p t e r 8 S u m m a r yC h a p t e r 8 S u m m a r y

In Chapter 8 you learned how to manipulate buffers.

Key Binding Keystroke Effect___ ______ ________ _____ _ _ _
 next-buffer ^X^X Switch to the next buffer in the

buffer list

select-buffer ^XB Switch to a particular buffer

list-buffers ^X^B List all buffers

delete-buffer ^XK Delete a particular buffer if it
is off-screen

26

Modes MicroEMACS Reference Manual

C h a p t e r 9C h a p t e r 9

M o d e sM o d e s

EMACS allows you to change the way it works in order to customized it to the style of editing you are
using. It does this by providing a number of different modes. These modes can effect either a single buffer, or any new
buffer that is created. To add a mode to the current buffer, type ^XM add-mode. EMACS will then prompt you for
the name of a mode to add. When you type in a legal mode name, and type a <NL>, EMACS will add the mode name
to the list of current mode names in the mode line of the current buffer.

To remove an existing mode, typing the ^X^M delete-mode will cause EMACS to prompt you for the name
of a mode to delete from the current buffer. This will remove that mode from the mode list on the current mode line.

Global modes are the modes which are inherited by any new buffers which are created. For example, if you
wish to always do string searching with character case being significant, you would want global mode EXACT to be
set so that any new files read in inherent the EXACT mode. Global modes are set with the M-M add-global-mode
command, and unset with the M-^M delete-global-mode command. Also, the current global modes are displayed in
the first line of a ^X^B list-buffers command.

On machines which are capable of displaying colors, the mode commands can also set the background and
foreground character colors. Using add-mode or delete-mode with a lowercase color will set the background color in
the current window. An uppercase color will set the foreground color in the current window. Colors that EMACS
knows about are: white, cyan, magenta, yellow, blue, red, green, and black. If the computer you are running on does
not have eight colors, EMACS will attempt to make some intelligent guess at what color to use when you ask for one
which is not there.

9 . 1 A B B R E V m o d e9 . 1 A B B R E V m o d e

EMACS can save much tedious typing by automatically expanding predefined abrreviations as you type.
Placing EMACS into ABBREV mode tells to to access its table of abbreviations, and look for these abbreviations
while you type. When EMACS sees that you have typed one of these, it replaces it with the expanded definition.
Information on setting up abbreviation definitions is in chapter 18.

9 . 2 A S A V E m o d e9 . 2 A S A V E m o d e

Automatic Save mode tells EMACS to automatically write out the current buffer to its associated file on a
regular basis. Normally this will be every 256 characters typed into the file. The environment variable $ACOUNT
counts down to the next auto-save, and $ASAVE is the value used to reset $ACOUNT after a save occurs.

9 . 3 C M O D E m o d e9 . 3 C M O D E m o d e

CMODE is useful to C programmers. When CMODE is active, EMACS will try to assist the user in a
number of ways. This mode is set automatically with files that have a .c or .h extension.

The <NL> key will normally attempt to return the user to the next line at the same level of indentation as the
last non blank line, unless the current line ends with a open brace ({) in which case the new line will be further
indented by one tab position.

A close brace (}) will search for the corresponding open brace and line up with it.

A pound sign (#) with only leading white space will delete all the white space preceding itself. This will
always bring preprocessor directives flush to the left margin.

27

MicroEMACS Reference Manual Modes

Whenever any close fence is typed, IE)]>}, if the matching open fence is on screen in the current window,
the cursor will briefly flash to it, and then back. This makes balancing expressions, and matching blocks much easier.

9 . 4 C R Y P T m o d e9 . 4 C R Y P T m o d e

When a buffer is in CRYPT mode, it is encrypted whenever it is written to a file, and decrypted when it is
 read from the file. The encryption key can be specified on the command line with the –k switch, or with the M-E set-

encryption-key command. If you attempt to read or write a buffer in crypt mode and now key has not been set,
 EMACS will execute set-encryption-key automatically, prompting you for the needed key. Whenever EMACS
 prompts you for a key, it will not echo the key to your screen as you type it (IE make SURE you get it right when you

set it originally).

The encryption algorithm used changes all characters into normal printing characters, thus the resulting file
is suitable for sending via electronic mail. All version of MicroEMACS should be able decrypt the resulting file

 regardless of what machine encrypted it. Also available with EMACS is the stand alone program, MicroCRYPT,
 which can en/decrypt the files produced by CRYPT mode in EMACS.

9 . 5 E X A C T m o d e9 . 5 E X A C T m o d e

When this mode is active, all string searches and replacements will take upper/lower case into account.
 Normally the case of a string during a search or replace is not taken into account.

9 . 6 M A G I C m o d e9 . 6 M A G I C m o d e

In the MAGIC mode certain characters gain special meanings when used in a search pattern. Collectively
 they are know as regular expressions, and a limited number of them are supported in MicroEmacs. They grant greater

flexibility when using the search command. They have no affect on the incremental search command.

The symbols that have special meaning in MAGIC mode are ^, $, ., &, ?, *, +, <, >, [(and], used with it),
and \.

The characters ^ and $ fix the search pattern to the beginning and end of line, respectively. The ^ character
must appear at the beginning of the search string, and the $ must appear at the end, otherwise they lose their meaning
and are treated just like any other character. For example, in MAGIC mode, searching for the pattern “t$” would put

 the cursor at the end of any line that ended with the letter ‘t’. Note that this is different than searching for “t<NL>”,
 that is, ‘t’ followed by a newline character. The character $ (and ^, for that matter) matches a position, not a character,

so the cursor remains at the end of the line. But a newline is a character that must be matched like any other character,
which means that the cursor is placed just after it – on the beginning of the next line.

The character . has a very simple meaning — it matches any single character, except the newline. Thus a
 search for “bad.er” could match “badger”, “badder” (slang), or up to the ‘r’ of “bad error”.

The character [indicates the beginning of a character class. It is similar to the ‘any’ character ., but you get
to choose which characters you want to match. The character class is ended with the character]. So, while a search for
“ba.e” will match “bane”, “bade”, “bale”, “bate”, et cetera, you can limit it to matching “babe” and “bake” by

 searching for “ba[bk]e”. Only one of the characters inside the [and] will match a character. If in fact you want to
 match any character except those in the character class, you can put a ^ as the first character. It must be the first
 character of the class, or else it has no special meaning. So, a search for [^aeiou] will match any character except a
 vowel, but a search for [aeiou^] will match any vowel or a ^.

If you have many characters in order, that you want to put in the character class, you may use a dash (-) as a
range character. So, [a-z] will match any letter (or any lower case letter if EXACT mode is on), and [0-9a-f] will match
any digit or any letter ‘a’ through ‘f’, which happen to be the characters for hexadecimal numbers. If the dash is at the
beginning or end of a character class, it is taken to be just a dash.

The ? character indicates that the preceding character is optional. The character may or may not appear in the
matched string. For example, a search for “bea?st” would match both “beast” and “best”. If there is no preceding

 charcter for ? to modify, it is treated as a normal question mark character.

28

Modes MicroEMACS Reference Manual

The * character is known as closure, and means that zero or more of the preceding character will match. If
there is no preceding character,

* has no special meaning and is treated as a normal asterisk. The closure symbol will also have no special
meaning if it is preceded by the beginning of line symbol ^, since it represents a position, not a character.

The notion of zero or more characters is important. If, for example, your cursor was on the line

This line is missing two vowels.

and a search was made for “a*”, the cursor would not move, because it is guaranteed to match no letter ‘a’ ,
which satisfies the search conditions. If you wanted to search for one or more of the letter ‘a’, you could search for
“aa*”, which would match the letter a, then zero or more of them. A better way, however, is to use the + character.

The + character behaves in every respect like the * character, with the exception that its minimum match
range is one, not zero. Thus the pattern “a+” is identical to “aa*”.

The < and > characters matches a position at the beginning and end of a word respectively. Thus a pattern
like \<wo only matches the string “wo” if it is at the beginning of a word.

The \ is the escape character. With the exception of groups, which are explained below, the \ is used at those
times when you want to be in MAGIC mode, but also want a regular expression character to be just a character. It
turns off the special meaning of the character. So a search for “it\.” will search for a line with “it.”, and not “it”
followed by any other character. Or, a search for “TEST*+” would match the word TEST followed by one or more
asterisks. The escape character will also let you put ^, –, or] inside a character class with no special side effects.

The character pair \(represent the start of a group in a search string. A group is ended by the character pair
\). All characters matched within the \(and \) are part of a numbered group, and may be referenced with the &GROUP
function, or with a \ followed by the group number in the replacement string of replace-string or the query-replace-
string commands. For example, a search for “INDEX\([0-9]+\)”, to be replaced by “getind(\1)” would change

indptr := INDEX42

to

indptr := getind(42)

.

There may be up to nine groups. Groups may be nested.

The character & (ampersand) is a replacement character, and represents all the characters which were
matched by the search string. When used in the M-R replace-string or the M-^R query-replace-string commands, the
& will be substituted for the search string.

9 . 7 O V E R m o d e9 . 7 O V E R m o d e

OVER mode stands for overwrite mode. When in this mode, when characters are typed, instead of simply
inserting them into the file, EMACS will attempt to overwrite an existing character past the point. This is very useful
for adjusting tables and diagrams.

9 . 8 W R A P m o d e9 . 8 W R A P m o d e

Wrap mode is used when typing in continuous text. Whenever the cursor is past the currently set $fillcol (72
by default) and the user types a space or a <NL>, the last word of the line is brought down to the beginning of the next
line. Using this, one just types a continuous stream of words and EMACS automatically inserts <NL>s at appropriate
places.

NOTE to programmers:

29

MicroEMACS Reference Manual Modes

 The EMACS variable $wraphook contains the name of the
 function which executes when EMACS detects it is time to
 wrap. This is set to the function wrap-word
 by default, but can be changed to
 activate different functions and macroes at wrap time.

9 . 9 V I E W m o d e9 . 9 V I E W m o d e

VIEW mode disables all commands which can change the current buffer. EMACS will display an error
 message and ring the bell every time you attempt to change a buffer in VIEW mode.

30

Modes MicroEMACS Reference Manual

C h a p t e r 9 S u m m a r yC h a p t e r 9 S u m m a r y

In Chapter 9 you learned about modes and their effects.

Key Binding Keystroke Effect___ ______ ________ _____ _ _ _
 add-mode ^XM Add a mode to the current buffer

delete-mode ^X^M Delete a mode from the current buffer

add-global-mode M-M Add a global mode to the
current buffer

delete-global-mode M-^M Delete a global mode from the
current buffer

31

MicroEMACS Reference Manual Files

C h a p t e r 1 0C h a p t e r 1 0

F i l e sF i l e s

A file is simply a collection of related data. In EMACS we are dealing with text files — named collections of
text residing on a disk (or some other storage medium). You will recall that the major entities EMACS deals with are
buffers. Disk-based versions of files are only active in EMACS when you are reading into or writing out of buffers. As
we have already seen, buffers and physical files are linked by associated file names. For example, the buffer “ch7.txt”
which is associated with the physical disk file “ch7.txt.” You will notice that the file is usually specified by the drive

 name or (in the case of a hard drive) a path. Thus you can specify full file names in EMACS,

e.g. disk:\directories\filename.extension

If you do not specify a disk and directories, the default disk and the current directory is used.

IMPORTANT — If you do not explicitly save your buffer to a file, all your edits will be lost when you leave
EMACS (although EMACS will prompt you when you are about to lose edits by exiting). In addition, EMACS does
not protect your disk-based files from overwriting when it saves files. Thus when you instruct EMACS to save a file to
disk, it will create a file if the specified file doesn’t exist, or it will overwrite the previously saved version of the file

 thus replacing it. Your old version is gone forever.

If you are at all unsure about your edits, or if (for any reason) you wish to keep previous versions of a file,
you can change the name of the associated file with the command ^XN change-file-name. When this file is saved to

 disk, EMACS will create a new physical file under the new name. The earlier disk file will be preserved.

For example, let’s load the file fang.txt into EMACS. Now, type ^XN. The EMACS command line prompts
“Name:”. Enter a new name for the file — say new.txt and press <NL>. The file will be saved under the new filename,
and your disk directory will show both fang.txt and new.txt.

An alternative method is to write the file directly to disk under a new filename. Let’s pull our “publish.txt”
 file into EMACS. To write this file under another filename, type ^X^W write-file. EMACS will prompt you “write
 file:”. Enter an alternate filename — desktop.txt. Your file will be saved as the physical file “desktop.txt”.

Note that in the examples above, although you have changed the names of the related files, the buffer names
remain the same. However, when you pull the physical file back into EMACS, you will find that the buffer name now
relates to the filename.

For example — You are working with a buffer “fang.txt” with the related file “fang.txt”. You change the
 name of the file to “new.txt”. EMACS now shows you working with the buffer “fang.txt” and the related file
 “new.txt”. Now pull the file “new.txt” into EMACS. Notice that the buffer name has now changed to “new.txt”.

If for any reason a conflict of buffer names occurs,(if you have files of the same name on different drives for
example) EMACS will prompt you “use buffer:”. Enter an alternative buffer name if you need to.

For a list of file related commands (including some we‘ve already seen), see the summary page.

32

Files MicroEMACS Reference Manual

C h a p t e r 1 0 S u m m a r yC h a p t e r 1 0 S u m m a r y

In Chapter 10 you learned some of the more advanced concepts of file naming and manipulation. The
relationship between files and buffers was discussed in some detail.

Key Binding Keystroke Effect___ ______ ________ _____ _ _ _

 save-file ^X^S Saves contents of current buffer with
associated filename on default disk/
directory (if not specified)

write-file ^X^W Current buffer contents will be
saved under specified name

change-file-name
^XN The associated filename is changed

(or associated if not previously
specified) as specified

find-file ^X^F Reads specified file into buffer and
switches you to that buffer, or switches
to buffer in which the file has previously
been read

read-file ^X^R Reads file into buffer thus overwriting
buffer contents. If file has already
been read into another buffer, you will
be switched to it

view-file ^X^V The same as read-file except the buffer
is automatically put into VIEW mode thus
preventing any changes from being made

33

MicroEMACS Reference Manual Screen Formatting

C h a p t e r 1 1C h a p t e r 1 1

S c r e e n F o r m a t t i n gS c r e e n F o r m a t t i n g

1 1 . 1 W r a p p i n g T e x t1 1 . 1 W r a p p i n g T e x t

As we learned in the introduction, EMACS is not a word processor, but an editor. Some simple formatting
 options are available however, although in most cases they will not affect the appearance of the finished text when it is

run through the formatter. We have already encountered WRAP mode which wraps lines longer than a certain length
(default is 75 characters). You will recall that WRAP is enabled by entering ^XM and responding to the command line
prompt with wrap.

You can also set your own wrap margin by changing the $fillcol variable. Do this by typing ^XA $fillcol
 <NL> 20. Now the fill column is set at column 20. Now try typing some text. You’ll notice that EMACS only allows

you to input text in a 20 character wide column!

To reset the wrap column to 72 characters, type ^XA $fillcol <NL> 72. Your text will again wrap at the
 margin you’ve been using up to this point.

1 1 . 2 R e f o r m a t t i n g P a r a g r a p h s1 1 . 2 R e f o r m a t t i n g P a r a g r a p h s

After an intensive editing session, you may find that you have paragraphs containing lines of differing
 lengths. Although this disparity will not affect the formatted text, aesthetic and technical concerns may make it
 desirable to have consistent paragraph blocks on the screen. If you are in WRAP mode, you can reformat a paragraph

with the command M-Q fill-paragraph. This command ‘fills’ the current paragraph reformatting it so all the lines are
filled and wrap logically.

1 1 . 3 C h a n g i n g C a s e1 1 . 3 C h a n g i n g C a s e

There may be occasions when you find it necessary to change the case of the text you’ve entered. EMACS
allows you to change the case of even large amounts of text with ease. Let’s try and convert a few of the office

 traditionalists to the joy of word processing. Type in the following text:

 Throw away your typewriter and learn to use a word
 processor. Word processing is relatively easy to learn
 and will increase your productivity enormously. Enter
 the Computer Age and find out just how much fun it can
 be!!

Let’s give it a little more impact by capitalizing the first four words. The first step is to define the region of
text just as you would if you were doing an extensive deletion. Set the mark at the beginning of the paragraph with
M-<space> set-mark and move the cursor to the space beyond “typewriter.” Now enter ^X^U case-region-upper.
Your text should now look like this:

 THROW AWAY YOUR TYPEWRITER and learn to use a word
 processor. Word processing is relatively easy to learn
 and will increase your productivity enormously. Enter
 the Computer Age and find out just how much fun it can
 be!!

If you want to change the text back to lower case, type ^X^L case-region-lower. You can also capitalize
 individual words. To capitalize the word “fun”, position the cursor in front of the word and type M-U case-word-

34

Screen Formatting MicroEMACS Reference Manual

upper. The word is now capitalized. To change it ck to lower case, move the cursor back to the beginning of the word
and type M-L case-word-lower.

You may also capitalize individual letters in EMACS. The command M-C case-word-capitalize capitalizes
the first letter after the point. This command would normally be issued with the cursor positioned in front of the first
letter of the word you wish to capitalize. If you issue it in the middle of a word, you can end up with some strAnge
looking text.

1 1 . 4 T a b s1 1 . 4 T a b s

Unless your formatter is instructed to take screen text literally (as MicroSCRIBE does in the ‘verbatim’
environment for example), tabs in EMACS generally affect screen formatting only.

When EMACS is first started, it sets the default tab to every eighth column. As long as you stay with default,
every time you press the tab key a tab character, ^I is inserted. This character, like other control characters, is invisible
— but it makes a subtle and significant difference to your file and editing.

For example, in default mode, press the tab key and then type the word Test. “Test” appears at the eighth
column. Move your cursor to the beginning of the word and delete the backward character. The word doesn’t move
back just one character, but flushes to the left margin. The reason for this behavior is easily explained. In tab default,
EMACS inserts a ‘real’ tab character when you press the tab key. This character is inserted at the default position, but
NO SPACES are inserted between the tab character and the margin (or previous tab character). As you will recall,
EMACS only recognizes characters (such as spaces or letters) and thus when the tab character is removed, the text
beyond the tab is flushed back to the margin or previous tab mark.

This situation changes if you alter the default configuration. The default value may be changed by entering a
numeric argument before pressing the tab key. As we saw earlier, pressing the META key and entering a number
allows you to specify how EMACS performs a given action. In this case, let’s specify an argument of 10 and hit the
tab key.

Now hit the tab key again and type Test. Notice the word now appears at the tenth column. Now move to the
beginning of the word and delete the backward character. “Test” moves back by one character.

EMACS behaves differently in these circumstances because the ^I handle-tab function deals with tabbing in
two distinct ways. In default conditions, or if the numeric argument of zero is used, handle-tab inserts a true tab
character. If, however, a non-zero numeric argument is specified, handle-tab inserts the correct number of spaces
needed to position the cursor at the next specified tab position. It does NOT insert the single tab character and hence
any editing functions should take account of the number of spaces between tabbed columns.

The distance which a true tab character moves the cursor can be modified by changing the value of the
$hardtab environment variable. Initially set to 8, this will determine how far each tab stop is placed from the previous
one. (Use the ^XA set command to set the value of an environment variable).

Many times you would like to take text which has been created using the tab character and change it to use
just spaces. The command ^X^D detab-region changes any tabs in the currently selected region into the right number
of spaces so the text does not change. This is very useful for times when the file must be printed or transferred to a
machine which does not understand tabs.

Also, the inverse command, ^X^E entab-region changes multiple spaces to tabs where possible. This is a
good way to shrink the size of large documents, especially with data tables. Both of these commands can take a
numeric argument which will be interpreted as the number of lines to en/detab.

Another function, related to those above is provided for by the ^X^T trim-region when invoked will delete
any trailing white space in the selected region. A preceding numeric argument will do this for that number of lines.

35

MicroEMACS Reference Manual Screen Formatting

C h a p t e r 1 1 S u m m a r yC h a p t e r 1 1 S u m m a r y

In Chapter 11 introduced some of the formatting features of EMACS. Text-wrap, paragraph reformatting,
 and tabs were discussed in some detail. The commands in the following table were covered in the chapter.

Key Binding Keystroke Effect___ ______ ________ _____ _ _ _
 add-mode/WRAP ^XM[WRAP] Add wrap mode to current buffer

delete-mode/WRAP ^X^M[WRAP] Remove wrap mode from current buffer

fill-paragraph M-Q Logically reformats the current
paragraph

case-word-upper M-U Text from point to end of the
current word is changed to uppercase

case-word-lower M-L Text from point to end of the
current word is changed to lowercase

case-word-capitalize M-C First word (or letter) after the
point is capitalized

case-region-upper ^X^U The current region is uppercased

case-region-lower ^X^L The current region is lowercased

handle-tab ^I Tab interval is set to the given
numeric argument

entab-region ^X^E Changes multiple spaces to tabs
characters where possible

detab-region ^X^D Changes tab characters to the
appropriate number of spaces

trim-region ^X^T Trims white space from the end
of the lines in the current region

36

Undoing the Damage MicroEMACS Reference Manual

C h a p t e r 1 2C h a p t e r 1 2

U n d o i n g t h e D a m a g eU n d o i n g t h e D a m a g e

Often, while editing, we make mistakes. It would be hard not to do so. But when you are in EMACS, most
commands can be undone. Each buffer in EMACS stores a list of the changes made to that buffer since the last time it
was read from the disk. This list holds every character typed in, every character deleted, and where these occured. If
you make a mistake while editing, typing the ^_ undo command undoes the last command you typed. If you precede
this with a numeric argument, it undoes that many commands. For example:

<META>12^_

undoes the last 12 commands.

You can actually look at the list of commands stored to be undone by typing the ^XU list-undos command.
It will place a list of positions, repeat counts, actions and text arguments in a pop-up buffer. This was mostly useful for
the authors to debug the undo code, but is interesting to examine. You can see how EMACS records actions, as basic
insertions and deletions, seperated by command bounderies.

When undo information is collected by EMACS, it does occupy memory. On most machines this presents no
difficulty, but on some machines without virtual memory, and in smaller memory models, Like real mode under
MSDOS, EMACS will discard the oldest actions in the most ancient visited buffer as it needs more memory.

You can cause EMACS to discard its list of actions to be undone on the current buffer by using the M-^U
delete-undos command. This can be helpfull in speeding up the operation of a few of the very memory intensive
c o m m a n d s . N o r m a l l y y o u s h o u l d n o t n e e d t o u s e t h i s c o m m a n d , b u t i t s u s e i s r e c o m m e n d e d i n m a c r o s t h a t
manupulate large amounts of text to reclaim the memory used by the undo stack of temporary buffers.

Two environment variables control the actions of the undo mechanism. $undoflag, which defaults to TRUE,
can be set to FALSE to disable the undo mechanism altogether. $dispundo directs EMACS to display an additional
number on the current modeline which contains the number of primitive actions currently stored in its list of actions
for the current buffer.

37

MicroEMACS Reference Manual Undoing the Damage

C h a p t e r 1 2 S u m m a r yC h a p t e r 1 2 S u m m a r y

In Chapter 12 We learned how to undo recent editing changes. The commands in the following table were
 covered in this chapter.

Key Binding Keystroke Effect___ ______ ________ _____ _ _ _
 delete-undos M-^U Clear out all undo information

list-undos ^XU Pop up a list of all undo
information for the current buffer

undo ^_ Undo the last editing operation

38

Access to the Outside World MicroEMACS Reference Manual

C h a p t e r 1 3C h a p t e r 1 3

A c c e s s t o t h e O u t s i d e W o r l dA c c e s s t o t h e O u t s i d e W o r l d

EMACS has the ability to interface to other programs and the environment of the computer outside of itself.
It does this through a series of commands that allow it to talk to the computer’s command processor or shell. Just
what this is varies between different computers. Under MSDOS or PCDOS this is the command.com command
processor. Under UNIX it is the csh shell. On the Atari ST is can be the Mark Williams MSH or the Beckmeyer shell.
In each case, it is the part of the computer’s operating system that is responsible for determining what programs are
executed, and when.

The ^X! shell-command command prompts the user for a command line to send out to the shell to execute.
This can be very useful for doing file listings and changing the current directory or folder. EMACS gives control to the
shell, which executed the command, and then types [END] and waits for the user to type a character before redrawing
the screen and resuming editing. If the shell-command command is used from within the macro language, there is no
pause.

^X@ pipe-command command allows EMACS to execute a shell command, and if the particular computer
allows it, send the results into a buffer which is automatically displayed on the screen. The resulting buffer, called
“command” can be manipulated just like any other editing buffer. Text can be copied out of it or rearranged as needed.
This buffer is originally created in VIEW mode, so remember to ^X^Mview<NL> in order to change it.

Many computers provide tools which will allow you to filter text, making some modifications to it along the
way. A very common tool is the SORT program which accepts a file, sorts it, and prints the result out. The EMACS
command, ^X# filter-buffer sends the current buffer through such a filter. Therefore, if you wished to sort the current
buffer on a system which supplied a sort filter, you would type ^X#sort<NL>. You can also create your own filters
by writing programs and utilities which read text from the keyboard and display the results. EMACS will use any of
these which would normally be available from the current shell.

If you would like to execute another program directly, without the overhead of an intervening shell, you can
use the ^X$ execute-program command. It will prompt you for an external program and its arguments and attempt to
execute it. Like when EMACS looks for command files, EMACS will look first in the HOME directory, then down
the execute PATH, and finally in the current directory for the named program. On some systems, it will automatically
tack the proper extension on the file name to indicate it is a program. On some systems that don’t support this function,
^X$ will be equivalent to ^X! shell-command.

Sometimes, you would like to get back to the shell and execute other commands, without losing the current
contents of EM A C S . T h e ^ X C i - s h e l l c o m m a n d s h e l ls out of EMACS, leaving EMACS in the computer and
executing another command shell. Most systems would allow you to return to EMACS with the “exit” command.

On some systems, mainly advanced versions of UNIX, you can direct EMACS to “go into the background”
w i t h t h e ^ X D s u s p e n d - e m a c s c o m m and. T h i s p l a c e s E M A C S i n t h e b a c k g r o u n d r e t u r n i n g y o u t o t h e o r i g i n a l
command shell. EMACS can then be returned to at any time with the “fg” foreground command.

39

MicroEMACS Reference Manual Access to the Outside World

C h a p t e r 1 3 S u m m a r yC h a p t e r 1 3 S u m m a r y

In Chapter 13 introduced different ways to access the computers shell or command processor from within
 EMACS. The commands in the following table were covered in the chapter.

Key Binding Keystroke Effect___ ______ ________ _____ _ _ _
 execute-program ^X$ Execute an external program

directly

filter-command ^X# Send the current buffer through
a shell filter

i-shell ^XC Escape to a new shell

pipe-command ^X@ Send the results of an external
shell command to a buffer

shell-command ^X! Execute one shell command

suspend-emacs ^XD Place EMACS in the background
(some UNIX systems only)

40

Keyboard Macroes MicroEMACS Reference Manual

C h a p t e r 1 4C h a p t e r 1 4

K e y b o a r d M a c r o e sK e y b o a r d M a c r o e s

In many applications, you may need to repeat a series of characters or commands frequently. For example, a
paper may require the frequent repetition of a complex formula or a long name. You may also have a series of EMACS
commands that you invoke frequently. Keyboard macroes offer a convenient method of recording and repeating these
commands.

Imagine, for example, you are writing a scholarly paper on Asplenium platyneuron, the spleenwort fern.
Even the dedicated botanist would probably find it a task bordering on the agonizing to type Asplenium platyneuron
frequently throughout the paper. An alternative method is ‘record’ the name in a keyboard macro. Try it yourself.

The command ^X(begin-macro starts recording the all the keystrokes and commands you input. After
you’ve typed it, enter Asplenium platyneuron. To stop recording, type ^X) end-macro. EMACS has stored all the
keystrokes between the two commands. To repeat the name you’ve stored, just enter ^XE execute-macro, and the
name “Asplenium platyneuron” appears. You can repeat this action as often as you want, and of course as with any
EMACS command, you may precede it with a numerical argument to repeat it many times.

Because EMACS records keystrokes, you may freely intermix commands and text. Unfortunately, you can
only store one macro at a time. Thus, if you begin to record another macro, the previously defined macro is lost. Be
careful to ensure that you’ve finished with one macro before defining another. If you have a series of commands that
you would like to ‘record’ for future use, use the procedure facilities detailed in chapter 15.

41

MicroEMACS Reference Manual Keyboard Macroes

C h a p t e r 1 4 S u m m a r yC h a p t e r 1 4 S u m m a r y

Chapter 14 covered keyboard macroes. You learned how to record keystrokes and how to repeat the stored
sequence.

Key Binding Keystroke Effect___ ______ ________ _____ _ _ _

 start-macro ^X(Starts recording all keyboard input

end-macro ^X) Stops recording keystrokes for macro

execute-macro ^XE Entire sequence of recorded
keystrokes is replayed

42

MicroEMACS Procedures MicroEMACS Reference Manual

C h a p t e r 1 5C h a p t e r 1 5

M i c r o E M A C S P r o c e d u r e sM i c r o E M A C S P r o c e d u r e s

Procedures, or macroes, are programs that are used to customize the editor and to perform complicated
editing tasks. They may be stored in files or buffers and may be executed using an appropriate command, or bound to a
particular keystroke. Portions of the standard start-up file are implemented via procedures, as well as the built in help
system. The M-^E run command causes named procedures to be executed. The execute-file command allows you to
execute a procedure stored in a disk file, and the execute-buffer command allows you to execute a procedure stored in a
buffer. Procedures are stored for easy execution by executing files that contain the store-procedure command.

In a command file, the store-procedure command takes a string argument which is the name of a procedure
to store. These procedures than can be executed with the M-^E run command. Also, giving the name of a stored
procedure within another procedure will executed that named procedure as if it had been called up with the run
command.

Some fairly length examples of MicroEMACS procedures can be seen by examining the standard files that
come with EMACS. The emacs.rc file (called .emacsrc) under UNIX) is the MicroEMACS command file which is
executed when EMACS is normally run. It contains a number of different stored procedures along with the lines to
setup and display the Function key window and to call up other procedures and command files using function keys.

There are many different aspects to the language within MicroEMACS. Editor commands are the various
commands that manipulate text, buffers, windows, et cetera, within the editor. Directives are commands which control
what lines get executed within a macro. Also there are various types of variables. Environmental variables both control
and report on different aspects of the editor. User variables hold string values which may be changed and inspected.
Buffer variables allow text to be placed into variables. Interactive variable allow the program to prompt the user for
information. Functions can be used to manipulate all these variables.

1 5 . 1 C o n s t a n t s1 5 . 1 C o n s t a n t s

All constants and variable contents in EMACS are stored as strings of characters. Numbers are stored digit
by digit as characters. This allows EMACS to be “typeless”, not having different variables types be legal in different
contexts. This has the disadvantage of forcing the user to be more careful about the context of the statements variables
are placed in, but in turn gives them more flexibility in where they can place variables. Needless to say, this also
allows EMACS’s expression evaluator to be both concise and quick.

Wherever statements need to have arguments, it is legal to place constants. A constant is a double quote
character, followed by a string of characters, and terminated by another double quote character. To represent various
special characters within a constant, the tilde (~) character is used. The character following the tilde is interpreted
according to the following table:

Sequence Result_______ ______ _
~n EMACS newline character (breaks lines)
~r ^M carriage return
~l ^J linefeed

 ~~ ~ tilde
 ~b ^H backspace
 ~e ^[escape
 ~f ^L formfeed
 ~t ^I tab
 ~" " quote

 Any character not in the table which follows a tilde will be passed unmodified. This action is similar to the
^Q quote-character command available from the keyboard.

EMACS may use different characters for line terminators on different computers. The ~n combination will
always get the proper line terminating sequence for the current system.

43

MicroEMACS Reference Manual MicroEMACS Procedures

The double quotes around constants are not needed if the constant contains no internal white space and it
 also does not happen to meet the rules for any other EMACS commands, directives, variables, or functions. This is
 reasonable useful for numeric constants.

1 5 . 2 V a r i a b l e s1 5 . 2 V a r i a b l e s

Variables in MicroEMACS procedures can be used to return values within expressions, as repeat counts to
 editing commands, or as text to be inserted into buffers and messages. The value of these variables is set using the set

^XA command. For example, to set the current fill column to 64 characters, the following macro line would be used:

set $fillcol 64

or to have the contents of %name inserted at the point in the current buffer, the command to use would be:

insert-string %name

15.2.1 Environmental Variables

“What good is a quote if you can’t change it?”

These variables are used to change different aspects of the way the editor works. Also they will return the
 current settings if used as part of an expression. All environmental variable names begin with a dollar sign ($) and are

in lower case.

$abbell Ring the bell on an expansion of an abbreviation.

$abcap Match capitols typed in abbreviation while expanding.

$abquick Expand abbreviations whenever any character is typed, instead of just when whitespace
is typed.

$acount The countdown of inserted characters until the next save-file.

$asave The number of inserted characters between automatic file-saves in ASAVE mode.

$bufhook The function named in this variable is run when a buffer is entered. It can be used to
implement modes which are specific to a paricular file or file type.

$cbflags Current buffer attribute flags (See appendix G for details).

$cbufname Name of the current buffer.

$cfname File name of the current buffer.

$cmdhook Name of function to run before accepting a command. This is by default set to nop.

$cmode Integer containing the mode of the current buffer. (See Appendix F for values).

$curchar Ascii value of the character currently at the point.

$curcol Current column of point in current buffer.

$curline Current line of point in current buffer.

$curwidth Number of columns used currently.

$curwind Current window number.

$cwline Current display line in current window.

$debug Flag to trigger macro debugging.

44

MicroEMACS Procedures MicroEMACS Reference Manual

$deskcolor Color to use for current desktop, default to BLACK.

$diagflag If set to TRUE, diagonal dragging of text and mode lines is enabled. If FALSE, text and
modelines can only be dragged horizontally or vertically at one time.

$discmd Controls the echoing of command prompts. Default is TRUE.

$disinp Controls the echoing of input at the command prompts. Default is TRUE.

$disphigh If set to TRUE, high-bit characters (single byte characters that are greater than 127 in
value) will be displayed in a pseudo-control format. The characters “^!” will lead off the
sequence, followed by the character stripped of its high bit. Default is FALSE.

$dispundo If TRUE, EMACS displays the current depth of the undo stack on the current modeline.

$exbhook This variable holds the name of a function or macro which is run whenever you are
switching out of a buffer.

$exithook The procedure named in this variable is run when MicroEMACS is about to exit. Setting
$gflags bit 4 during the execution of this procedure prevents the exit from occuring.

$fcol The current line position being displayed in the first column of the current window.

$fillcol Current fill column.

$flicker Flicker Flag set to TRUE if IBM CGA set to FALSE for most others.

$fmtlead lists all formatter command leadin characters. Lines beginning with these characters will
be considered the beginning of paragraphs.

$gflags Global flags controlling some EMACS internal functions (See appendix G for details).

$gmode Global mode flags. (See Appendix F for values).

$hardtab Number of spaces between hard tab stops. Normally 8, this can be used to change
indentation only within the editor.

$hjump The number in here tells EMACS how many columns to scroll the screen horizontally
when a horizontal scroll is required.

$hscroll This flag determines if EMACS will scroll the entire current window horizontally, or just
the current line. The default value, TRUE, results in the entire current window being
shifted left and right when the cursor goes off the edge of the screen.

$kill This contains the first 127 characters currently in the kill buffer and can be used to set the
contents of the kill buffer.

$language [READ ONLY]Contains the name of the language which the current EMACS’s message
w i l l d i s p l a y . (C u r r e n t l y E M A C S i s a v a i l a b l e i n E n g l i s h , F r e n c h , S p a n i s h , L a t i n ,
Portuguese, Dutch, German, Japanese, and Pig Latin).

$lastkey [READ ONLY]Last keyboard character typed.

$lastmesg [R E A D O N L Y] C o n t a i n s t h e t e x t o f t h e l a s t m e s s a g e w h i c h e m a c s w r o t e o n t h e
command line.

$line The current line in the current buffer can be retrieved and set with this environment
variable.

$lterm Character(s) to write as a line terminator when writing a file to disk. Default is null,
which causes a ‘\n’ character to be written. Not all operating systems support this.

$lwidth [READ ONLY]Returns the number of characters in the current line.

$match [READ ONLY]Last string matched in a search.

45

MicroEMACS Reference Manual MicroEMACS Procedures

$modeflag Determines if mode lines are currently displayed.

$msflag If TRUE, the mouse (if present) is active. If FALSE, no mouse cursor is displayed, and
no mouse actions are taken.

$newscreen Create a new screen for every newly created buffer. This variable is most usefull when
using a windowing system.

$numwind The number of windows displayed.

$orgrow The desktop row position of current screen.

$orgcol The desktop column position of current screen.

$pagelen The number of screen lines used currently.

$palette A string used to control the palette register settings on graphics versions. The usual form
consists of groups of three octal digits setting the red, green, and blue levels.

$paralead A string containing all paragraph start characters.

$pending [READ ONLY]A flag used to determine if there are user keystrokes waiting to be
processed.

 $popflag Use pop-up windows. Default is TRUE.

$popwait When TRUE, popup windows prompt the user to type a key before they disappear. When
FALSE, they do not stick around to be seen. Usefull when a pop-up buffer conatins info
needed from a macro. Default is TRUE.

$posflag Display the line and column position on the modeline. Default is FALSE.

$progname [READ ONLY]Always contains the string “MicroEMACS” for standard MicroEMACS.
Could be something else if EMACS is incorporated as part of someone else’s program.

$ram The amount of remaining memory if MicroEMACS was compiled with RAMSIZE set.
A debugging tool.

$readhook This variable holds the name of a function to execute whenever a file is read into
EMACS. Normally, using the standard emacs.rc file, this is bound to a function which
places EMACS into CMODE if the extension of the file read is .c or .h.

$region Contains the string of the current region. It will truncate at the stringsize limit, 255.

$replace The current replace pattern used in replace commands.

$rval T h i s c o n t a i n s t h e r e t u r n v a l u e f r o m t h e l a s t s u b p r o c e s s w h i c h w a s i n v o k e d f r o m
EMACS.

$scrname The current screen name.

$search The current search pattern used in search and replace commands.

$searchpnt Set the placement of the of the cursor on a successful search match. $searchpnt = 0 (the
default), causes the cursor to be placed at the end of the matched text on forward
searches, and at the beginning of the text on reverse searches. $searchpnt = 1 causes the
cursor to be placed at the the beginning of the matched text regardless of the search
direction, while $searchpnt = 2 causes the cursor to be placed at the end.

$seed Integer seed of the random number generator.

$softtab N u m b e r o f s p a c e s i n s e r t e d b y E M A C S w h e n t h e h a n d l e - t a b c o m m a n d (w h i c h i s
normally bound to the TAB key) is invoked.

$sres Current screen resolution (CGA, MONO, EGA or VGA on the IBM-PC driver. LOW,
MEDIUM, HIGH or DENSE on the Atari ST1040, NORMAL on most others).

46

MicroEMACS Procedures MicroEMACS Reference Manual

$ssave A variable which flags EMACS’s method of saving files. If set to TRUE, EMACS will
write all files out to a temporary file, delete the original, then rename the temporary to
the old file name. The default value of this is TRUE.

$sscroll When set to TRUE, EMACS will smoothly scroll windows one line at a time when
cursoring off the ends of the current window. Default is FALSE.

$status [READ ONLY]Status of the success of the last command (TRUE or FALSE). This is
usually used with !force to check on the success of a search, or a file operation.

$sterm This is the character used to terminate search string inputs. The default for this is the last
key bound to meta-prefix.

$target Current target for line moves (setting this fools EMACS into believing the last command
was a line move).

$time [READ ONLY]Contains a string corresponding to the current date and time. Usually this
is in a form similar to “Mon May 09 10:10:58 1988”. Not all operating systems will
support this.

$timeflag Flag to determine if the time of day is displayed on the modeline. Default is FALSE. The
time is updated only after a keystroke.

$tpause Controls the length of the pause to display a matched fence when the current buffer is in
CMODE and a close fence has been typed.

$undoflag Enable collection of undo information and undo commands.

$version [READ ONLY]Contains the current MicroEMACS version number.

$wchars When set, MicroEMACS uses the characters listed in it to determine if it is in a word or
not. If it is not set (the default), the characters it uses are the upper and lower case letters,
and the underscore.

$wline Number of display lines in current window.

$wraphook This variable contains the name of an EMACS function which is executed when a buffer
is in WRAP mode and it is time to wrap. By default this is bound to wrap-word.

$writehook This variable contains the name of an EMACS function or macro which is invoked
whenever EMACS attempts to write a file out to disk. This is executed before the file is
written, allowing you to process a file on the way out.

$xpos The column the mouse was at the last mouse button press.

$yankflag Controls the placement of the cursor after a yank command or an insert. When $yankflag
is FALSE (the default), the cursor is placed at the end of the yanked or inserted text.
When it is TRUE, the cursor remains at the start of the text.

$ypos The line which the mouse was on during the last mouse button press.

15.2.2 User variables

User variables allow you to store strings and manipulate them. These strings can be pieces of text, numbers
(in text form), or the logical values TRUE and FALSE. These variables can be combined, tested, inserted into buffers,
and otherwise used to control the way your macroes execute. At the moment, up to 512 user variables may be in use in
one editing session. All users variable names must begin with a percent sign (%) and may contain any printing
characters. Only the first 16 characters are significant (IE differences beyond the sixteenth character are ignored). Most
operators will truncate strings to a length of 128 characters.

47

MicroEMACS Reference Manual MicroEMACS Procedures

15.2.3 Buffer Variables

Buffer variables are special in that they can only be queried and cannot be set. What buffer variables are is a
way to take text from a buffer and place it in a variable. For example, if I have a buffer by the name of RIGEL2, and it
contains the text:

Richmond
Lafayette
<*>Bloomington (where <*> is the current point)
Indianapolis
Gary
=* MicroEMACS 4.0 (WRAP) == rigel2 == File: /data/rigel2.txt =====

and within a command I reference #rigel2, like:

insert-string #rigel2

MicroEMACS would start at the current point in the RIGEL2 buffer and grab all the text up to the end of
 that line and pass that back. Then it would advance the point to the beginning of the next line. Thus, after our last
 command executes, the string “Bloomington” gets inserted into the current buffer, and the buffer RIGEL2 now looks

like this:

Richmond
Lafayette
Bloomington
<*>Indianapolis (where <*> is the current point)
Gary
=* MicroEMACS 4.0 (WRAP) == rigel2 == File: /data/rigel2.txt =====

as you have probably noticed, a buffer variable consists of the buffer name, preceded by a pound sign (#).

15.2.4 Interactive variables

Interactive variables are actually a method to prompt the user for a string. This is done by using an at sign
 (@) followed either with a quoted string, or a variable containing a string. The string is the placed on the bottom line,

and the editor waits for the user to type in a string. Then the string typed in by the users is returned as the value of the
interactive variable. For example:

set %quest "What file? "
find-file @%quest

will ask the user for a file name, and then attempt to find it. Note also that complex expressions can be built
up with these operators, such as:

set %default "file1"
@&cat &cat "File to decode[" %default "]: "

which prompts the user with the string:

File to decode[file1]:

1 5 . 3 F u n c t i o n s1 5 . 3 F u n c t i o n s

Functions can be used to act on variables in various ways. Functions can have one, two, or three arguments.
These arguments will always be placed after the function on the current command line. For example, if we wanted to
increase the current fill column by two, using emacs’s set (^XA) command, we would write:

48

MicroEMACS Procedures MicroEMACS Reference Manual

set $fillcol &add $fillcol 2
\ \ \ \ ____second operand
\ \ \ _________first operand
\ \ _______________function to execute
\ _____________________variable to set
___________________________set (^XA) command

Function names always begin with the ampersand (&) character, and are only significant to the first three
characters after the ampersand. Functions will normal expect one of three types of arguments, and will automatically
convert types when needed. Different argument types include:

<num> an ascii string of digits which is interpreted as a numeric value. Any string which does
not start with a digit or a minus sign (-) will be considered zero.

<str> An arbitrary string of characters. At the moment, strings are limited to 128 characters in
length.

<log> A logical value consisting of the string “TRUE” or “FALSE”. Numeric strings will also
evaluate to “FALSE” if they are equal to zero, and “TRUE” if they are non-zero.
Arbitrary text strings will have the value of “FALSE”.

A list of the currently available functions follows. Functions are always used in lower case, the uppercase
letters in the function table are the short form of the function (IE &div for ÷).

Numeric Functions: (returns <num>)

&ADD <num> <num> Add two numbers
&SUB <num> <num> Subtract the second number from the first
&TIMes <num> <num> Multiply two numbers
&DIVide <num> <num> Divide the first number by the second

giving an integer result
&MOD <num> <num> Return the reminder of dividing the

first number by the second
&NEGate <neg> Multiply the arg by -1
&LENgth <str> Returns length of string
&SINdex <str1> <str2> Finds the position of <str2> within

<str1>. Returns zero if not found.
&ASCii <str> Return the ascii code of the first

character in <str>
&RND <num> Returns a random integer between 1 and <num>
&ABS <num> Returns the absolute value of <num>
&BANd <num> <num> Bitwise AND function
&BOR <num> <num> Bitwise OR function
&BXOr <num> <num> Bitwise XOR function
&BNOt <num> Bitwise NOT function

String manipulation functions: (returns <str>)

&ABBREV <str> return the expansion of <str>
&CAT <str> <str> Concatenate the two strings to form one
&LEFt <str> <num> return the <num> leftmost characters

from <str>
&RIGht <str> <num> return the <num> rightmost characters

from <str>
&MID <str> <num1> <num2>

Starting from <num1> position in <str>,
return <num2> characters.

&REVerse <str> return a string with reversed-ordered
characters

&UPPer <str> Uppercase <str>
&LOWer <str> Lowercase <str>
&CHR <num> return a string with the character

represented by ascii code <num>
>C returns a string of characters

49

MicroEMACS Reference Manual MicroEMACS Procedures

containing a EMACS command input from
the user

>K return a string containing a single
keystroke from the user

&ENV <str> If the operating system is capable, this
returns the environment string associated
with <str>

&BIND <str> return the function name bound to the
keystroke <str>

&XLATE <str1> <str2> <str3>
&FINd <str> Find the named file <str> along the

path and return its full file specification
or an empty string if none exists

&TRIM <str> Trim the trailing whitespace from a string

Logical Testing functions: (returns <log>)

&NOT <log> Return the opposite logical value
&AND <log1> <log2> Returns TRUE if BOTH logical arguments

are TRUE
&OR <log1> <log2> Returns TRUE if either argument

is TRUE
&EQUal <num> <num> If <num> and <num> are numerically

equal, return TRUE
&LESs <num1> <num2> If <num1> is less than <num2>, return

TRUE.
&GREater <num1> <num2> If <num1> is greater than <num2>, return

TRUE.
&SEQual <str1> <str2> If the two strings are the same, return

TRUE.
&SLEss <str1> <str2> If <str1> is less alphabetically than

<str2>, return TRUE.
&SGReater <str1> <str2> If <str1> is alphabetically greater than

or equal to <str2>, return TRUE.
&EXIst <str> Does the named file <str> exist?

&ISNum <num> Is the given argument a legitimate number?

Special Functions:

&GROup <num> Return group <num> as set by a MAGIC
mode search.

&SUPper <str1> <str2> Translate the first char in <str1> to
the first char in <str2> when uppercasing.

&SLOwer <str1> <str2> Translate the first char in <str1> to
the first char in <str2> when lowercasing.

&INDirect <str> Evaluate <str> as a variable.

This last function deserves more explanation. The &IND function evaluates its argument, takes the resulting
string, and then uses it as a variable name. For example, given the following code sequence:

; set up reference table

set %one "elephant"
set %two "giraffe"
set %three "donkey"

 set %index "%two"
insert-string &ind %index

the string “giraffe” would have been inserted at the point in the current buffer. This indirection can be safely
nested up to about 10 levels.

50

MicroEMACS Procedures MicroEMACS Reference Manual

1 5 . 4 D i r e c t i v e s1 5 . 4 D i r e c t i v e s

Directives are commands which only operate within an executing procedure, IE they do not make sense as a
single command. As such, they cannot be called up singly or bound to keystroke. Used within command files, they
control what lines are executed and in what order.

Directives always start with the exclamation mark (!) character and must be the first non-white space placed
on a line. Directives executed interactively (via the execute-command-line command) will be ignored.

15.4.1 !ENDM Directive

This directive is used to terminate a procedure or macro being stored. For example, if a file is being executed
contains the text:

; Read in a file in view mode, and make the window red

store-procedure get-red-viewed-file
find-file @"File to view: "
add-mode "view"
add-mode "red"

!endm

print "[Consult procedure has been loaded]"

only the lines between the store-macro command and the !ENDM directive are stored in procedure get-red-
viewd-file. Both named procedures and numbered macroes (via the store-macro command) should be terminated with
this directive.

15.4.2 !FORCE Directive

When MicroEMACS executes a procedure, if any command fails, the procedure is terminated at that point.
If a line is preceded by a !FORCE directive, execution continues whether the command succeeds or not. For example:

; Merge the top two windows

save-window ;remember what window we are at
1 next-window ;go to the top window
delete-window ;merge it with the second window
!force restore-window ;This will continue regardless
add-mode "red"
Often this is used together with the $status environment variable to test if a command succeeded. For

example:

set %seekstring "String to Find: "
!force search-forward %seekstring
!if &seq $status TRUE

print "Your string is Found"
!else

print "No such STRING!"
!endif

15.4.3 !IF, !ELSE, and !ENDIF Directives

This directive allows statements only to be executed if a condition specified in the directive is met. Every
line following the !IF directive, until the first !ELSE or !ENDIF directive, is only executed if the expression following
the !IF directive evaluates to a TRUE value. For example, the following commands creates the portion of a text file
automatically. (yes believe me, this will be easier to understand then that last explanation….)

!if &sequal %curplace "timespace vortex"

51

MicroEMACS Reference Manual MicroEMACS Procedures

insert-string "First, rematerialize~n"
!endif
!if &sequal %planet "earth" ;If we have landed on earth...

!if &sequal %time "late 20th century" ;and we are then
write-message "Contact U.N.I.T."

!else
insert-string "Investigate the situation....~n"
insert-string "(SAY ’stay here Sara’)~n"

!endif
!else

set %conditions @"Atmosphere conditions outside? "
!if &sequal %conditions "safe"

insert-string &cat "Go outside......" "~n"
insert-string "lock the door~n"

!else
insert-string "Dematerialize..try somewhen else"
newline

!endif
!endif

15.4.4 !GOTO Directive

Flow can be controll e d w i t h i n a M i c r o E M A C S p r o c e d u r e u s i n g t h e ! G O T O directive. It takes as an
argument a label. A label consists of a line starting with an asterisk (*) and then an alphanumeric label. Only labels in
the currently executing procedure can be jumped to, and trying to jump to a non-existing label terminates execution of
a procedure. For example:

;Create a block of DATA statements for a BASIC program

insert-string "1000 DATA "
set %linenum 1000

*nxtin
update-screen ;make sure we see the changes
set %data @"Next number: "
!if &equal %data 0

!goto finish
!endif

!if &greater $curcol 60
2 delete-previous-character
newline
set %linenum &add %linenum 10
insert-string &cat %linenum " DATA "

!endif

insert-string &cat %data ", "
!goto nxtin

*finish

2 delete-previous-character
newline

15.4.5 !WHILE and !ENDWHILE Directives

This directive allows you to set up repetitive tasks easily and efficiently. If a group of statements need to be
executed while a certain condition is true, enclose them with a while loop. For example,

!while &less $curcol 70
insert-string &cat &cat "[" #stuff "]"

!endwhile

52

MicroEMACS Procedures MicroEMACS Reference Manual

places items from buffer “item” in the current line until the cursor is at or past column 70. While loops may
be nested and can contain and be the targets of !GOTOs with no ill effects. Using a while loop to enclose a repeated
task will run much faster than the corresponding construct using !IFs.

15.4.6 !BREAK Directive

This lets you abort out of the most executing currently inner while loop, regardless of the condition. It is
often used to abort processing for error conditions. For example:

; Read in files and substitute "begining" with "beginning"

set %filename #list
!while ¬ &seq %filename "<end>"

!force find-file %filename
!if &seq $status FALSE

write-message "[File read error]"
!break

!endif
beginning-of-file
replace-string "begining" "beginning"
save-file
set %filename #list

!endwhile

This while loop will process files until the list is exhausted or there is an error while reading a file.

15.4.7 !RETURN Directive

The !RETURN Directive causes the current procedure to exit, either returning to the caller (if any) or to
interactive mode. For example:

; Check the monitor type and set %mtyp

!if &sres "CGA"
set %mtyp 1
!return

!else
set %mtyp 2

!endif

insert-string "You are on a MONOCHROME machine!~n"

This directive can also allow the currently executing procedure to return a value which is automatically
placed in the $rval environment value and passed back as the procedure’s value if the procedure is called by the &call
function. For example:

store-procedure squared %arg

!return × %arg %arg
!endm

set %a &call squared 6

This code sets the value of user variable %a to 36, the square of 6. The expresion after the !RETURN
directive is evaluated as the value returned by the procedure when used as an argument to the &call function.

1 5 . 5 L o c a l a n d G l o b a l V a r i a b l e s1 5 . 5 L o c a l a n d G l o b a l V a r i a b l e s

Most user variables are considered global. That means that once they are defined, they can be referenced and
changed from any procedure or interactively. If you wish a variable to be defined only within the currently executing

53

MicroEMACS Reference Manual MicroEMACS Procedures

procedure, you can declare it as local. Local variables only can be seen and changed within the procedure where they
have been defined. To declare a local variable, use the local keyword.

local %tempvar

This declares %tempvar as a local user variable within the procedure that the statement executes. Local
 declarations happen when the statement executes, not automatically when the procedure is entered, so make sure to put

the local statement before any line that references that user variable. If the name of a user variable matches an already
declared variable, the local variable overides the global variable while still in the function where it is declared.

There is a global keyword which can be used to declare a user variable to be global, and to initialize its value
to an empty string. Since user variables are created on the fly when they are first referenced, this statement is not

 strictly needed, but is provided for documentation purposes.

1 5 . 6 P a r a m e t e r s t o P r o c e d u r e s1 5 . 6 P a r a m e t e r s t o P r o c e d u r e s

When you store a procedure, you can follow the procedure name with a list of parameters. These parameters
are treated as local variables to the procedure, and their initial values are taken from the list of expresions following the
call to that procedure. For example:

store-procedure to-the-power %base %exp

local %result

set %result %base
!while &gre %exp 1

set %result × %result %base
set %exp &sub %exp 1

!endwhile
!return %result

!endm
insert-string to-the-power 2 8

When this example is executed, the number 256 (which is 2^8) is inserted into the current position of the
 current buffer. The function perameters are treated just like local variables in scope.

54

Debugging MicroEMACS Procedures MicroEMACS Reference Manual

C h a p t e r 1 6C h a p t e r 1 6

D e b u g g i n g M i c r o E M A C S P r o c e d u r e sD e b u g g i n g M i c r o E M A C S P r o c e d u r e s

When developing new procedures, it is very convenient to be able to trace their execution to discover errors.
The $debug environment variable enables procedure debugging. While this variable is TRUE, emacs will stop at each
line it intends to execute and allow you to view it, and issue a number of different commands to help determine how
the procedure is executing.

For example, we will step through the procedure which toggles the function key window off. The first thing
to do, is to set $debug, using the ^XA set command. Type ^XA and emacs will prompt you on the command line with
“Variable to set: “. Type in “$debug” and press the enter key. Emacs will then ask “Value: “. Type in “TRUE” (in
capital letters) and press the enter key.

While macro debugging is enabled (as it is now) emacs will report each time a variable is assigned a value,
by displaying the variable and its value on the command line. Right now,

((($debug <- TRUE)))

appears on the command line to tell you that $debug now has been assigned the value of TRUE. Press the
space bar to continue.

Now, lets try to debug a macro. Press function key 5 which normally toggles the function key window. The
first thing that appears is:

«<[toggle-fkeys]:!if %rcfkeys»>

At this point, emacs is waiting for a command. It is prepared to see if the user variable %rcfkeys is TRUE,
and execute some lines if they are. Suppose we want to see the value of this variable, type the letter “e” to evaluate an
expression. Emacs will prompt with “EXP: “. Type “%rcfkeys” followed by the enter key. Emacs should then respond
with “TRUE” to indicate that the function key window is currently on screen.

Press the space bar to allow the !if directive to execute. Emacs will decide that it is TRUE, and then display
the next command to execute.

«<[toggle-fkeys]:!goto rcfoff»>

Notice emacs tells us what procedure we are currently executing (in this case, the macro bound to toggle-
fkeys). Press the space bar again to execute the !goto directive.

«<[toggle-fkeys]:save-window»>

Emacs is saving the position of the current window so that it can attempt to return to it after it has brought up
the function key window. Press the space bar to continue. Now emacs displays:

«<[toggle-fkeys]:1 next-window»>

The next-window command moves the current point to the next window down, or when it has an argument
like now, to that window from the top. This puts the point in the top window, the one with the function key window in
it.

Sometimes when debugging we will want to keep track of the value of a variable or expresion. To do this,
type a ‘t’ character to track an expression. For now, type n $numwind and hit the return. The display on the command
line changes to:

«<[=2][toggle-fkeys]:1 next-window»>

The expresion we typed, in this case the environment variable $numwind, is currently evaluated as 2. Press
space to execute the next-window command. Now the command line shows:

55

MicroEMACS Reference Manual Debugging MicroEMACS Procedures

«<[=2][toggle-fkeys]:!if &sequal “Function Keys” $cbufname»>

This macro is now checking to see if the current buffer is really named “Function Keys”. If it is not, then it
does not want to delete that window. But since the function window is displayed at the moment, and is at the top of the
screen, this statement is true. So we press the space to go on.

«<[=2][toggle-fkeys]:delete-window»>

We press the space again and let emacs delete the function key window. Notice the value of $numwind
 changes to 1 with one less window beying displayed.

«<[=1][toggle-fkeys]:!endif»>

We are at the end of the conditional code. Press space again to see:

«<[=1][toggle-fkeys]:!force restore-window»>

This restores the point to the window we started in. This command could have failed if the cursor started in
the function key window, and that would have normally stopped the macro in its tracks. But the !force directive tells it
to ignore any failures. Press the space again:

«<[=1][toggle-fkeys]:write-message “[Function key window OFF]”»>

Well, this lets the user know what we have done, and that we are done. Press the space again.

«<[=1][toggle-fkeys]:set %rcfkeys FALSE»>

Lastly, we set the user variable that the macro uses to tell if it should be turning the function key window on
or off to FALSE, letting it know that it is off. When we press the space bar for the last time, the command line shows
that variable being set to FALSE.

Anytime while we were debuging, we can hit ? to list the different keystrokes that are legal when debugging.
The ^G key will stop a macro immediatly.

If a macro is executing and hits an error (without the !force directive overriding the error), it stops and prints
a list of all the macroes it is in the middle of executing, and the lines that those macroes are executing at. You can then
go back and examine the offending statement and correct it.

While you are debugging, the ‘c’ key lets you execute any emacs command interactively. Be carefull with
 this, you can easily confuse emacs as to where it is or what it is doing by changing things in the middle of a macro. But

this is very usefull for testing out changes in variables or the position of the cursor, or any number of environment
 variables controlling emacs while your macro is running.

Lastly, hitting the current META key while debugging sets $debug to FALSE and finishes running your
 macro with no more debugging.

56

Key Bindings, What they are and why MicroEMACS Reference Manual

C h a p t e r 1 7C h a p t e r 1 7

K e y B i n d i n g s , W h a t t h e y a r e a n d w h yK e y B i n d i n g s , W h a t t h e y a r e a n d w h y

One of the features which makes MicroEMACS very adaptable is its ability to use different keystrokes to
execute different commands. The process of changing the particular command a key invokes is called rebinding. This
allows us to make the editor look like other popular editors and programs.

E a c h c o m m a n d i n M i c r o E M A C S h a s a n a m e w h i c h i s u s e d f o r b i n d i n g p u r p o s e s . F o r e x a m p l e , t h e
command to move the cursor down one page is called next-line and is normally bound to the ^N key. If you decided
that you also wanted to use the ^D key to move the cursor down one line, you would use the M-K bind-to-key
command. EMACS would respond with “: bind-to-key “ on the command line and allow you to type in a command
name. Then type in the name of the command you want to change, in this case next-line, followed by the <NL> key.
EMACS will then wait for you to type in the keys you want to activate the named function. Type a single ^D. From
now on, typing ^D will cause EMACS to move down one line, rather than its original function of deleting characters.

To find out the name of a command, consult the list of valid EMACS commands in Appendix B. Also, you
can use the ^X? describe-key command to look up the name of a command. Type ^X? and then the key to use that
command, and EMACS will show you the name of the command.

After you have experimented with changing your key bindings, you may decide that you want to change
some bindings permanently. To have EMACS rebind keys to your pleasure each time you start EMACS, you can add
statements to the end of your startup file (emacs.rc or .emacsrc depending on the system). For example,

bind-to-key next-line ^D

Notice, that control D character in the startup file is represented visibly as an uparrow key followed by a
capital D. To know how to represent any keys you want to bind, use the describe-key command on the key, and use the
sequence that is displayed.

bind-to-key split-current-window FN1

This example would make function key 1 activate the command that splits the current window in two.

You can also bind your own macroes to keys. You do this by using the ^X^K macro-to-key command. This
works just like the bind-to-key command, but binds that key to your own macro,

store-procedure insert-stuff
insert-string "<Page Header> page

<nn>~n"
!endm
macro-to-key insert-stuff A-P

This example when run causes emacs to insert a page header at the current point whenever the ALT-E
combination is typed.

EMACS will let you define a large number of keys, but will report “Binding table FULL!” when it runs out
of space to bind keys. Normally EMACS will allow up to 512 key bindings (including approx. 300 originally bound
keys).

If you want to get a current listing of all the commands and the keys bound to them, use the describe-
bindings command. Notice, that this command is not bound to any keys!

There are some key bindings that cannot be made without special precautions. Alternative bindings for ^X,
META, ^G, and ^U (which bind respectively to ctlx-prefix, meta-prefix, abort-command, and universal-argument)
must be made before re-binding ^X, META, ^G, or ^U. The reason is to protect the innocent user from losing the
prefix and other commands inadvertantly.

57

MicroEMACS Reference Manual Key Bindings, What they are and why

C h a p t e r 1 7 S u m m a r yC h a p t e r 1 7 S u m m a r y

In chapter 17, you learned how change what commands and macroes are executed when a particular key is
 typed.

 Key Binding Keystroke Effect___ ______ ________ _____ _ _ _

 bind-to-key M-K Associate a particular keystroke
with an emacs built in command.

macro-to-key ^X^K Associate a particular keystroke
with a user written macro.

58

Abbreviations and Their Definitions MicroEMACS Reference Manual

C h a p t e r 1 8C h a p t e r 1 8

A b b r e v i a t i o n s a n d T h e i r D e fi n i t i o n sA b b r e v i a t i o n s a n d T h e i r D e fi n i t i o n s

If you have a lot of repetitive typing of large terms, names or strings of any kind, EMACS can make this
simpler by looking for simple words or abbreviations that expand to these larger strings. To use this feature, you need
to place the buffer you are typing in into ABBREV mode, and you need to define a table of the abbreviations to
expand.

The add-abbrev command lets you add an abbreviation EMACS’s current table of abbreviations. This
command is usually used as part of a procedure, and can be conviniently placed at the end of your emacs.rc startup file.
Here is an example abbreviation definition:

add-abbrev “um” “MicroEMACS”

When you type um into a buffer, it is instantly replaced with the word MicroEMACS. Another way to define
a large number of abbreviations at one time is to place them in a buffer, one to a line, with the first space or tab
seperating the abbreviation from its definition. Then use the define-abbrevs command, giving it the name of that
buffer, and it will memorize all the definitions in that buffer.

You can always look at the list of currently defined abbreviations by using the describe-abbrevs command.
If you wish to create a buffer to be used to define abbreviations, the insert-abbrevs command inserts a table of them
into the current buffer at the point. And since these abbreviations take up memory, you can dispose of the lot by
issuing the kill-abbrevs command.

If you want EMACS to beep at you when it expands an abbreviation, set the $abbell environment variable to
TRUE. If you wish EMACS to match the definition to your capitalization of the typed in abbreviation, set $abcap to
TRUE.

Normally EMACS will only attempt an abbreviation when it thinks that you have finished typing a word.
This means these only happen when you type white space, or the return key. If you want it to be more agressive and
attempt completions when the last letter of the abbreviation are typed, set $abquick to TRUE.

Inside your own preocedures, the &abbrev function will return the definition of any abbreviation given it as
an argument.

59

MicroEMACS Reference Manual Abbreviations and Their Definitions

C h a p t e r 1 8 S u m m a r yC h a p t e r 1 8 S u m m a r y

In chapter 18, you learned how to set up abbreviations and their definitions, and how to control their use.
 Here is a table of the commands covered in this chapter and their corresponding key bindings:

Key Binding Keystroke Effect___ ______ ________ _____ _ _ _

 add-abbrev (none) Add an abbreviation to the
global table of abbreviations

delete-abbrev (none) Delete an abbreviation
kill-abbrevs (none) Kill all abbreviations
define-abbrevs (none) Add abbreviations in <buffer>

to the global abbreviation table
insert-abbrevs (none) Insert the current global

abbreviation table at the point
describe-abbevs (none) Pop-up a list of defined abbreviations

60

MicroEMACS Command Line Switches and Startup Files MicroEMACS Reference Manual

A p p e n d i x AA p p e n d i x A

M i c r o E M A C S C o m m a n d L i n e S w i t c h e s a n d S t a r t u p F i l e sM i c r o E M A C S C o m m a n d L i n e S w i t c h e s a n d S t a r t u p F i l e s

When EMACS first executes, it always searches for a file, called .emacsrc under most UNIX systems or
emacs.rc on most other systems which it will execute as EMACS macroes before it reads in the named source files.
This file normally contains EMACS macroes to bind the function keys to useful functions and load various useful
macroes. The contents of this file will probably vary from system to system and can be modified by the user as desired.

When searching for this file, EMACS looks for it in this order. First, it attempts to find a definition for
“HOME” in the environment. It will look in that directory first. Then it searches all the directories listed in the
“PATH” environment variable. Then it looks through a list of predefined standard directories which vary from system
to system. Finally, failing all of these, it looks in the current directory. This is also the same method EMACS uses to
look up any files to execute, and to find it’s help file EMACS.HLP.

On computers that call up EMACS via a command line process, such as MSDOS and UNIX, there are
different things that can be added to the command line to control the way EMACS operates. These can be switches,
which are a dash (’-’) followed by a letter, and possible other parameters, or a startup file specifier, which is an at sign
‘@’ followed by a file name.

@<file> This causes the named file to be executed instead of the standard emacs.rc file before
emacs reads in any other files. More than one of these can be placed on the command
line, and they will be executed in the order that they appear.

–C The following source files on the command line can be changed (as opposed to being in
VIEW mode). This is mainly used to cancel the effects of the –v switch used previously
in the same command line.

–E This flag causes emacs to automati c a l l y r u n t h e s t a r t u p fi l e “ e r r o r . c m d ” i n s t e a d of
emacs.rc. This is used by various C compilers for error processing (for example, Mark
Williams C).

–G<num> Upon entering EMACS, position the cursor at the <num> line of the first file.

–I<var> <value> Initialize an EMACS variable with <value>. This can be useful to force EMACS to start
in a particular mode. (For example, invoke EMACS with “emacs –i$sres VGA foo.bar”
to edit file foo.bar in VGA 50 line mode on an IBM-PC).

–K<key> This key tells emacs to place the source files in CRYPT mode and read it in using <key>
as the encryption key. If no key is listed immediately after the –K switch, EMACS will
prompt for a key, and not echo it as it is typed.

–R This places EMACS in “restricted mode” where any commands allowing the user to read
or write any files other than the ones listed on the command line are disabled. Also all
commands allowing the user access to the operating system are disabled. This makes
EMACS very useful as a “safe” environment for use within other applications and
especially used as a remote editor for a BBS or electronic bulletin board system.

–S<string> After EMACS is started, it automatically searches for <string> in the first source file.

–V This tells EMACS that all the following sources files on the command line should be in
VIEW mode to prevent any changes being made to them.

61

MicroEMACS Reference Manual Command Completion

A p p e n d i x BA p p e n d i x B

C o m m a n d C o m p l e t i o nC o m m a n d C o m p l e t i o n

Some versions of MicroEMACS will allow you to abbrieviate buffer names, command names and file names
as you enter them. To use this, type in the first few characters of the name you wish, and then hit either the space bar,
the META key or the TAB key. MicroEMACS will then attempt to look at the list of all the availible names and if

 there is only one which will fit, it will choose that name. If there are several names that quailify, as many characters as
are common to ALL of them w i l l b e e n t e r e d . I f t h e r e a r e n o p o s s i b l e m a t c h e s , t h e b e l l w i l l ring to indicate
MicroEMACS can not complete the command.

For example, if you have several files in your current directory with the following names:

prog1.c
prog1.obj
prog1.exe
prog1.doc
program.one
project.one
test.c
tes

and you enter the ^X^F find-file command, if you type ‘p’ and then hit the space bar, EMACS will respond
by typing the ‘r’ that is common to all the above file names begining with ‘p’. If you then type ‘ogr’ and hit the tab

 key, EMACS will respond with ‘am.one’ and automatically hit the enter key for you.

If you were to instead type an ‘a’ and hit the space bar, EMACS will beep, informing you that there is no
 possible match.

If you type a ‘te’ and hit the space bar, EMACS will then type the following ‘s’, but it will not automatically
enter it because it is possible you mean to get to the test.c file.

Buffer name, and command name completion is available in all versions of MicroEMACS. File name
 completion is available on UNIX BSD4.3, the Atari ST, the AMIGA and under MSDOS.

62

MicroEMACS Commands MicroEMACS Reference Manual

A p p e n d i x CA p p e n d i x C

M i c r o E M A C S C o m m a n d sM i c r o E M A C S C o m m a n d s

Below is a complete list of the commands in EMACS, the keys normally used to do the command, and what
the command does. Remember, on some computers there may also be additional ways of using a command (cursor
keys and special function keys for example).

Command Binding Meaning________ ______ ________ _ _
abort-command ^G This allows the user to abort out of any

command that is waiting for input

add-mode ^XM Add a mode to the current buffer

add-global-mode M-M Add a global mode for all new buffers

append-file ^X^A Write a buffer to the end of a file

apropos M-A List out commands whose name contains
the string specified

backward-character ^B Move one character to the left

begin-macro ^X(Begin recording a keyboard macro

beginning-of-file M-< Move to the beginning of the file in
the current buffer

beginning-of-line ^A Move to the beginning of the current line

bind-to-key M-K Bind a key to a function

buffer-position ^X= List the position of the cursor in the
current window on the command line

case-region-lower ^X^L Make a marked region all lower case

case-region-upper ^X^U Make a marked region all upper case

case-word-capitalize M-C Capitalize the following word

case-word-lower M-L Lower case the following word

case-word-upper M-U Upper case the following word

change-file-name ^XN Change the name of the file in the
current buffer

change-screen-size (none) Change the number of lines of the screen
currently being used

change-screen-width (none) Change the number of columns of the
screen currently being used

clear-and-redraw ^L Clear the physical screen and redraw it

clear-message-line (none) Clear the command line

copy-region M-W Copy the currently marked region into
the kill buffer

63

MicroEMACS Reference Manual MicroEMACS Commands

count-words M-^C Count how many words, lines and
characters are in the current marked region

ctlx-prefix ^X Change the key used as the ^X prefix

cycle-screens A-C Bring the rearmost screen to front

delete-blank-lines ^X^O Delete all blank lines around the cursor

delete-buffer ^XK Delete a buffer which is not being
currently displayed in a window

delete-mode ^X^M Turn off a mode in the current buffer

delete-global-mode M-^M Turn off a global mode

delete-next-character ^D Delete the character following the cursor

delete-next-word M-D Delete the word following the cursor

delete-other-windows ^X1 Make the current window cover the entire
screen

delete-previous-character^H Delete the character to the left of the
cursor

delete-previous-word M-^H Delete the word to the left of the cursor

delete-screen A-D Delete a screen

delete-undos M-^U Delete all undo information

delete-window ^X0 Remove the current window from the screen

describe-bindings (none) Make a list of all legal commands

describe-functions (none) Make a list of all legal functions

describe-variables (none) Make a list of all environment
and user variables

describe-key ^X? Describe what command is bound to a
keystroke sequence

detab-region ^X^D Change all tabs in a region to the
equivalent spaces

display ^XG Prompts the user for a variable and
displays its current value

dump-variables none Places into a buffer the current values
of all environment and user variables

end-macro ^X) stop recording a keyboard macro

end-of-file M-> Move cursor to the end of the current buffer

end-of-line ^E Move to the end of the current line

end-of-word (none) Move the point just past the end of
the current word

entab-region ^X^E Change multiple spaces to tabs where
possible

exchange-point-and-mark ^X^X Move cursor to the last marked spot,

64

MicroEMACS Commands MicroEMACS Reference Manual

make the original position be marked

execute-buffer (none) Execute a buffer as a macro

execute-command-line (none) Execute a line typed on the command
line as a macro command

execute-file (none) Execute a file as a macro

execute-macro ^XE Execute the keyboard macro (play back
the recorded keystrokes)

execute-named-command M-X Execute a command by name

execute-procedure M-^E Execute a procedure by name

execute-program ^X$ Execute a program directly (not through
an intervening shell)

exit-emacs ^X^C Exit EMACS. If there are unwritten,
changed buffers EMACS will ask to confirm

fill-paragraph M-Q Fill the current paragraph

filter-buffer ^X# Filter the current buffer through an
external filter

find-file ^X^F Find a file to edit in the current window

find-screen A-F Bring the named screen to front,
creating it if needed

forward-character ^F Move cursor one character to the right

goto-line M-G Goto a numbered line

goto-mark M-^G Goto a numbered mark

goto-matching-fence M-^F Goto the matching fence

grow-window ^X^ Make the current window larger

handle-tab ^I Insert a tab or set tab stops

hunt-forward A-S Hunt for the next match of the last
search string

hunt-backward A-R Hunt for the last match of the last
search string

help M-? Read EMACS.HLP into a buffer and display it

i-shell ^XC Shell up to a new command processor

incremental-search ^XS Search for a string, incrementally

indent-region M-(Indent the current region one tab

insert-file ^X^I insert a file at the cursor in the
current file

insert-space ^C Insert a space to the right of the cursor

insert-string (none) Insert a string at the cursor

kill-paragraph M-^W Delete the current paragraph

65

MicroEMACS Reference Manual MicroEMACS Commands

kill-region ^W Delete the current marked region, moving
it to the kill buffer

kill-to-end-of-line ^K Delete the rest of the current line

label-function-key (none) Set the text on a function key label
(HP150 only)

list-buffers ^X^B List all existing buffers

list-screens A-B List all existing screens

list-undos ^XU List current buffer’s undo information

macro-to-key ^X^K Bind a key to a macro

meta-prefix <ESC> Key used to precede all META commands

mouse-move-down MSa

mouse-move-up MSb

mouse-resize-screen MS1

mouse-region-down MSe

mouse-region-up MSf

move-window-down ^X^N Move all the lines in the current window down

move-window-up ^X^P Move all the lines in the current window up

name-buffer M-^N Change the name of the current buffer

narrow-to-region ^X< hides all text not in the current region

newline ^M Insert a <NL> at the cursor

newline-and-indent ^J Insert a <NL> at the cursor and indent
the new line the same as the preceding line

next-buffer ^XX Bring the next buffer in the list into
the current window

next-line ^N Move the cursor down one line

next-page ^V Move the cursor down one page

next-paragraph M-N Move cursor to the next paragraph

next-window ^XO Move cursor to the next window

next-word M-F Move cursor to the beginning of the
next word

nop (none) Does nothing

open-line ^O Open a line at the cursor

overwrite-string (none) Overwrite a string at the cursor

pipe-command ^X@ Execute an external command and place
its output in a buffer

pop-buffer (none) Display a buffer temporarily, paging

66

MicroEMACS Commands MicroEMACS Reference Manual

previous-line ^P Move cursor up one line

previous-page ^Z Move cursor up one page

previous-paragraph M-P Move back one paragraph

previous-window ^XP Move the cursor to the last window

previous-word M-B Move the cursor to the beginning of the
word to the left of the cursor

print (none) Display a string on the command line
(a synonim to write-message)

query-replace-string M-^R Replace all of one string with another
string, interactively querying the user

quick-exit M-Z Exit EMACS, writing out all changed buffers

quote-character ^Q Insert the next character literally

read-file ^X^R Read a file into the current buffer

redraw-display M-^L Redraw the display, centering the
current line

remove-mark (none) Remove a numbered mark

resize-window ^XW Change the number of lines in the
current window

restore-window (none) Move cursor to the last saved window

replace-string M-R Replace all occurrences of one string
with another string from the cursor
to the end of the buffer

reverse-incremental-search ^XR Search backwards, incrementally

run M-^E Execute a named procedure

save-file ^X^S Save the current buffer if it is changed

save-window (none) Remember current window (to restore later)

scroll-next-up M-^Z Scroll the next window up

scroll-next-down M-^V Scroll the next window down

search-forward ^S Search for a string

search-reverse ^R Search backwards for a string

select-buffer ^XB Select a buffer to display in the
current window

set ^XA Set a variable to a value

set-encryption-key M-E Set the encryption key of the current buffer

set-mark Set the mark

shell-command ^X! Causes an external shell to execute
a command

show-files (none) Pop up a list of files from the

67

MicroEMACS Reference Manual MicroEMACS Commands

specified directory

shrink-window ^X^Z Make the current window smaller

source (none) Execute a file as a macro

split-current-window ^X2 Split the current window in two

store-macro (none) Store the following macro lines to a
numbered macro

store-procedure (none) Store the following macro lines to a
named procedure

transpose-characters ^T Transpose the character at the cursor
with the character to the left

trim-region ^X^T Trim any trailing white space from a region

unbind-key M-^K Unbind a key from a function

undent-region M-) Remove a leading indent from a region

undo ^_ Undo the last editing operation

universal-argument ^U Execute the following command 4 times

unmark-buffer M-~ Unmark the current buffer (so it is
no longer changed)

update-screen (none) Force a screen update during macro execution

view-file ^X^V Find a file,and put it in view mode

widen-from-region ^X> restores hidden text (see narrow-to-region)

wrap-word (none) Wrap the current word, this is an
internal function

write-file ^X^W Write the current buffer under a new
file name

write-message (none) Display a string on the command line

yank ^Y yank the kill buffer into the current
buffer at the cursor

68

MicroEMACS Bindings MicroEMACS Reference Manual

A p p e n d i x DA p p e n d i x D

M i c r o E M A C S B i n d i n g sM i c r o E M A C S B i n d i n g s

Below is a complete list of the key bindings used in MicroEMACS. This can be used as a wall chart
reference for MicroEMACS commands.

Default Key Bindings for MicroEmacs 4.0

^A Move to start of line ESC A Apropos (list some commands)
^B Move backward by characters ESC B Backup by words
^C Insert space ESC C Initial capitalize word
^D Forward delete ESC D Delete forward word
^E Goto end of line ESC E Reset Encryption Key
^F Move forward by characters ESC F Advance by words
^G Abort out of things ESC G Go to a line
^H Backward delete
^I Insert tab/Set tab stops
^J Insert <NL>, then indent
^K Kill forward ESC K Bind Function to a key
^L Refresh the screen ESC L Lower case word
^M Insert <NL> ESC M Add global mode
^N Move forward by lines ESC N Goto End paragraph
^O Open up a blank line
^P Move backward by lines ESC P Goto Begining of paragraph
^Q Insert literal ESC Q Fill current paragraph
^R Search backwards ESC R Search and replace
^S Search forward ESC S Suspend (BSD only)
^T Transpose characters
^U Repeat command four times ESC U Upper case word
^V Move forward by pages ESC V Move backward by pages
^W Kill region ESC W Copy region to kill buffer
^Y Yank back from killbuffer ESC X Execute named command
^Z Move backward by pages ESC Z Save all buffers and exit
^_ Undo last editing operation

ESC ^C Count words in region ESC ~ Unmark current buffer
ESC ^E Execute named procedure
ESC ^F Goto matching fence ESC ! Reposition window
ESC ^H Delete backward word ESC < Move to start of buffer
ESC ^K Unbind Key from function ESC > Move to end of buffer
ESC ^L Reposition window ESC . Set mark
ESC ^M Delete global mode ESC space Set mark
ESC ^N Rename current buffer ESC rubout Delete backward word
ESC ^R Search & replace w/query rubout Backward delete
ESC ^S Source command file
ESC ^U Delete undo information
ESC ^V Scroll next window down
ESC ^W Delete Paragraph
ESC ^X Execute command line
ESC ^Z Scroll next window up

^X < Narrow-to-region ^X ? Describe a key
^X > Widen-from-region ^X ! Run 1 command in a shell
^X = Show the cursor position ^X @ Pipe shell command to buffer
^X ^ Enlarge display window ^X # Filter buffer thru shell filter
^X 0 Delete current window ^X $ Execute an external program
^X 1 Delete other windows ^X (Begin macro
^X 2 Split current window ^X) End macro

^X A Set variable value

69

MicroEMACS Reference Manual MicroEMACS Bindings

^X ^B Display buffer list ^X B Switch a window to a buffer
^X ^C Exit MicroEMACS ^X C Start a new command processor
^X ^D Detab line ^X D Suspend MicroEMACS (UNIX only)
^X ^E Entab line ^X E Execute macro
^X ^F Find file
^X ^I Insert file
^X ^K Bind Macro to a key ^X K Delete buffer
^X ^L Lower case region
^X ^M Delete Mode ^X M Add a mode
^X ^N Move window down ^X N Rename current filename
^X ^O Delete blank lines ^X O Move to the next window
^X ^P Move window up ^X P Move to the previous window
^X ^R Get a file from disk ^X R Incremental reverse search
^X ^S Save current file ^X S Incremental forward search
^X ^T Trim line
^X ^U Upper case region ^X U List undo information
^X ^V View file
^X ^W Write a file to disk ^X W resize Window
^X ^X Swap "." and mark ^X X Use next buffer
^X ^Z Shrink window ^X Z Enlarge display window

Usable Modes_____ ______ _
 ABBREV Enable abbreviation expantions

ASAVE Save the file every 256 inserted characters
CMODE Change behavior of some commands to work better with C
CRYPT Current buffer will be encrypted on write, decrypted on read
EXACT Exact case matching on search strings
MAGIC Use regular expression matching in searches
OVER Overwrite typed characters instead of inserting them
REP Similar to OVER, handles double-byte characters and tabs differently
SPELL Invoke MicroSPELL to check for spelling errors
VIEW Read-Only mode where no modifications are allowed
WRAP Lines going past right margin "wrap" to a new line

WHITE/CYAN/MAGENTA/YELLOW/BLUE/RED/GREEN/BLACK/GREY/GRAY/LRED/LGREEN/LYELLO/LBLUE/LMAGENTA/LCYAN
Sets

foreground color
white/cyan/magenta/yellow/blue/red/green/black/grey/gray/lred/lgreen/lyello/lblue/lmagenta/lcyan Sets
background color

70

Numeric Arguments to Commands MicroEMACS Reference Manual

A p p e n d i x EA p p e n d i x E

N u m e r i c A r g u m e n t s t o C o m m a n d sN u m e r i c A r g u m e n t s t o C o m m a n d s

In general, preceding a MicroEMACS command with a numeric argument n causes the command to be
executed n times. However, there are a great many commands for which this has no effect, simply because it would
make no sense for the command to be executed more than once. There are also commands that take advantage of the
numeric arguments to alter their behavior subtly or unsubtly. The following is a list of these commands. Commands
that are not affected at all by numeric arguments are listed afterwards.

backward-character A negative argument invokes forward-character.

change-screen-size With no arguments, the number of rows defaults to the largest. Otherwise, set the screen
size to n.

change-screen-width With no arguments, the number of columns defaults to the largest. Otherwise, set the
screen width to n.

clear-and-redraw With an argument, centers the window around the current cursor position.

delete-next-character A negative argument invokes delete-previous-character.

delete-next-word With an argument of 0, will not delete the whitespace trailing the deleted word. A
negative argument will cause nothing to happen.

delete-previous-character A negative argument invokes delete-next-character.

delete-previous-word An negative or zero argument will cause nothing to happen.

detab-region Without an argument, detab-region changes hard tabs to spaces in the lines between the
mark and the cursor. With an argument n, the commands detab n lines – forward if n is
positive, backwards if not.

end-of-word A negative argument invokes next-word.

entab-region Without an argument, entab-region changes spaces to hard tabs in the lines between the
mark and the cursor. With an argument n, the commands entab n lines – forward if n is
positive, backwards if not.

exchange-point-and-mark Swap the current cursor position and mark number n. Without an argument, n defaults to
0.

exit-emacs Providing a numeric argument n causes two things to happen. First, no checking for
modified buffers will occur. Second, MicroEMACS exits with a status of n.

forward-character A negative argument invokes backward-character.

goto-line An argument n will be taken as the line number to go to. Without an argument, you will
be asked for a line number. In either case, the line number must be 1 or greater.

goto-mark Go to mark number n. Without an argument, n defaults to 0.

grow-window A negative argument invokes shrink-window. An argument of 0 causes no action.

handle-tab Without an argument, handle-tab deals with the tab character, whether it should be a
single “hard” tab, or expanded as spaces. With an argument n, $softtab is set to n.

hunt-backward The command will hunt n times. The command will report failure if it cannot find its
pattern the nth time, even if has found an occurrence of the pattern before number n. A
negative argument invokes hunt-forward.

71

MicroEMACS Reference Manual Numeric Arguments to Commands

hunt-forward The command will hunt n times. The command will report failure if it cannot find its
pattern the nth time, even if has found an occurrence of the pattern before number n. A
negative argument invokes hunt-backward.

kill-to-end-of-line With no argument n, the command deletes all characters to the end of the line. If it is
already at the end of the line, it will delete the newline. With a positive n as an argument,
the command will delete n complete lines, newline character and all, starting from the
cursor. With n equal to zero, the command deletes all text from the cursor to the
beginning of the line, but will not delete past the newline character. A negative n is
illegal.

 list-buffers With a numeric argument, INVISIBLE buffers are also listed.

move-window-down With a negative argument, invokes move-window-up.

move-window-up With a negative argument, invokes move-window-down.

next-buffer With an argument n, the nth buffer after the current one is selected, and read in if
necessary. Any buffers in between the current buffer and the target buffer that have not
yet been read in are read.

next-line A negative argument invokes previous-line.

next-page Without an argument, the window is scrolled forward by a full page. With an argument
n, the window is scrolled forwards by n lines. The cursor is placed on the upper left hand
corner. Negative arguments invoke previous-page.

next-paragraph A negative argument invokes previous-paragraph.

next-window With a positive argument n, the nth window from the top becomes the working window.
With a negative argument, the nth window from the bottom becomes the working
window.

 next-word A negative argument invokes previous-word.

pop-buffer Without an argument, the buffer is simply displayed in its pop-up screen. With an
argument, the buffer is not only displayed, but also given the attribute INVISIBLE.

previous-line A negative argument invokes next-line.

previous-page Without an argument, the window is scrolled backward by a full page. With an argument
n, the window is scrolled backwards by n lines. The cursor is placed on the upper left
hand corner. Negative arguments invoke next-page.

previous-paragraph A negative argument invokes next-paragraph.

previous-window With a positive argument n, the nth window from the bottom becomes the working
window. With a negative argument, the nth window from the top becomes the working
window.

previous-word A negative argument invokes next-word.

query-replace-string With a numeric argument, n occurrences of the search string may be replaced, depending
upon the user’s response. The count is based on the number of occurrences found, not
the number of positive responses from the user.

quick-exit Saves all modifed buffers, and exits with a status of n.

redraw-display With no argument, or when n is 0, the window is adjusted so that the cursor is in the
center. When n is positive, the window is adjusted so that the cursor is on the nth line of
the screen. When n is negative, the window is adjusted so that the cursor is on the last
line of the window, regardless of the magnitude of n.

remove-mark Remove mark number n. Without an argument, n defaults to 0.

72

Numeric Arguments to Commands MicroEMACS Reference Manual

replace-string Will replace n occurrences of the search string with the replacement string. Otherwise,
with no argument, all occurrences from the cursor position to the end of file are replaced.

resize-window Requires an argument which must be positive.

scroll-next-down A negative argument invokes scroll-next-up.

scroll-next-up A negative argument invokes scroll-next-down.

search-forward The command will search n times. The command will report failure if it cannot find its
pattern the nth time, even if it has found an occurrence of the pattern before number n. A
negative argument invokes search-reverse.

search-reverse The command will search n times. The command will report failure if it cannot find its
pattern the nth time, even if has found an occurrence of the pattern before number n. A
negative argument invokes search-forward.

select-buffer Without an argument, the buffer is simply displayed in the window. With an argument,
the buffer is not only displayed, but also given the attribute INVISIBLE.

set If using the set command interactively, preceding the command with a numeric argument
then makes it unecessary for the command to ask for the variable’s value (it will still ask
for the variable’s name). If used in a command line, then the command

set <variable name> <number>

is identical to

<number> set <variable name>

set-mark Set mark number n. Without an argument, n defaults to 0.

shrink-window A negative argument invokes grow-window. An argument of 0 causes no action.

split-current-window With n = 1, the new upper window becomes the current window. Any other numeric
argument makes the new lower window the current window. With no argument, the
current window becomes the new upper or lower window depending upon whether the
cursor was in the upper or lower half of the old window.

store-macro Since macroes are numbered, a numeric argument must be provided. These numbered
macroes are being phased out in preference for named macroes.

store-procedure If the command is provided a numeric argument, it will assume that store-macro is
actually being called.

trim-region Without an argument, trim-region removes spaces and tabs from the end of the lines
between the mark and the cursor. With an argument n, the commands trim n lines –
forward if n is positive, backwards if not.

E . 1 C o m m a n d s u n a f f e c t e d b y n u m e r i c a r g u m e n t s .E . 1 C o m m a n d s u n a f f e c t e d b y n u m e r i c a r g u m e n t s .

abort-command change-file-name describe-bindings
add-global-mode clear-message-line describe-functions
add-mode copy-region describe-key
append-file count-words describe-variables
apropos cycle-screens display
back-from-tag-word delete-blank-lines end-macro
begin-macro delete-buffer end-of-file
beginning-of-file delete-global-mode end-of-line
beginning-of-line delete-mode execute-command-line
bind-to-key delete-other-windows execute-program
buffer-position delete-screen fill-paragraph
case-region-lower delete-undos filter-buffer
case-region-upper delete-window find-file

73

MicroEMACS Reference Manual Numeric Arguments to Commands

find-screen mouse-resize-screen shell-command
goto-matching-fence name-buffer suspend-emacs
help narrow-to-region tag-word
i-shell nop transpose-characters
incremental-search pipe-command unbind-key
insert-file print unmark-buffer
kill-region re-tag-word update-screen
list-undos read-file view-file
macro-to-key restore-window widen-from-region
mouse-move-down reverse-incremental-search wrap-word
mouse-move-up save-file write-file
mouse-region-down save-window write-message
mouse-region-up set-encryption-key

74

Supported machines MicroEMACS Reference Manual

A p p e n d i x FA p p e n d i x F

S u p p o r t e d m a c h i n e sS u p p o r t e d m a c h i n e s

The following table lists all the hardware/compilers for which I currently support MicroEMACS. This is not
exclusive of all machines which MicroEMACS will run on, but I have either run it myself, or had a first hand report of
it running.

Hardware OS Compiler Comments_______ __ _______ _________ _ _ _
VAX 780 UNIX V5 native

BSD 4.2 native job control supported
VMS native SMG & ANSI support

SUN SUNOS 3 & 4 native
 gcc

 NCR Tower UNIX V5 native

IBM-RT PC BSD 4.3 native
AIX native

HP9000 UNIX V5 native

IBM-PC MSDOS 3.2 LATTICE 3 Large CODE/Large DATA
and above AZTEC 3.4e Large CODE/Large DATA

TURBO C 2.0 LARGE memory model
MSC 6.0
*MWC 86

SCO XENIX native
 FREEBSD 2.1 GCC
 Windows 3.1 MSC 6.0

WINDOWS 95 Visual C++ 4.1
WINDOWS NT Visual C++ 4.1

HP150 MSDOS Lattice 2.15 Function key labels
Turbo C 2.0 for the touch screen

HP110 MSDOS Lattice 2.15
Aztec 3.4e
Turbo C 2.0

*Data General 10
MSDOS Lattice 2.1 Texas Instruments Professional
MSDOS Lattice 2.15

Amiga Intuition Lattice 3.03
Aztec 3.6

ST520 TOS Mark Williams C Spawns under MSH
Lattice 3.1 (no shell commands)

Fujitsu FMR MSDOS MSC 6.0
series

NEC 9800 MSDOS Turbo 2.0 Function key support
series MSC 6.0

HP3000 series MPE native

 Systems to be supported (IE some code is already written:)______ _ _ _______ __ ____ ___ _ _____ _______ _ _ _ _ _ _ _ _ _

 75

MicroEMACS Reference Manual Supported machines

Macintosh System 7 Lightspeed C

*means that I do not own or have access to the listed compiler and/or
machine and must rely upon others to help support it.

76

Function Keys MicroEMACS Reference Manual

A p p e n d i x GA p p e n d i x G

F u n c t i o n K e y sF u n c t i o n K e y s

All environments now support a set of machine independant bindings for function keys. Below is a list of
these bindings (not all of these are supported on all systems).

Function keys in MicroEmacs

function Function ^function Alt-function
f1) FN1 S-FN1 FN^1 A-FN1

 f2) FN2 S-FN2 FN^2 A-FN2
 f3) FN3 S-FN3 FN^3 A-FN3
 f4) FN4 S-FN4 FN^4 A-FN4
 f5) FN5 S-FN5 FN^5 A-FN5
 f6) FN6 S-FN6 FN^6 A-FN6
 f7) FN7 S-FN7 FN^7 A-FN7
 f8) FN8 S-FN8 FN^8 A-FN8
 f9) FN9 S-FN9 FN^9 A-FN9
 f10) FN0 S-FN0 FN^0 A-FN0

 home) FN< FN^<
 CsUp) FNP FN^P
 PgUp) FNZ FN^Z
 CsLf) FNB FN^B
 5)

CsRt) FNF FN^F
 End) FN> FN^>
 CsDn) FNN FN^N
 PgDn) FNV FN^V
 Ins) FNC FN^C
 Del) FND FN^D

 77

MicroEMACS Reference Manual Machine Dependent Notes

A p p e n d i x HA p p e n d i x H

M a c h i n e D e p e n d e n t N o t e sM a c h i n e D e p e n d e n t N o t e s

This appendix lists some notes specific to individual implementations of MicroEMACS. Every attempt has
 been made to allow EMACS to be identical on all machines, but we have also tried to take advantage of function keys,

cursor keys, mice, and special screen modes where possible.

H . 1 I B M - P C / X T / A T a n d i t s c l o n e sH . 1 I B M - P C / X T / A T a n d i t s c l o n e s

The IBM-PC family of computers is supported with a variety of different display adapters. EMACS will
 attempt to discover what adapter is connected and use the proper driver for it. Below is a list of the currently supported

video adapters:

Adapter $sres Original mode used______ ____ ______ ____ ____ _ _ _ _
 Monochrome Graphics Adapter MONO MONO
 Color Graphics Adapter CGA CGA

CGA40 CGA40
Enhanced Graphics Adapter EGA CGA
Video Graphics Adapter VGA CGA

VGA12

If a driver for a Microsoft compatable mouse is installed on the system, EMACS will use the mouse in text
mode and allow the user all the standard mouse functions. The mouse cursor will appear to be a block of color in the
color opposite of it’s background.

EMACS also takes advantage of various function keys and the keys on the keypad on an IBM-PC. The
 function keys are initially not bound to any particular functions (except by the emacs.rc startup file), but the keypad
 keys do default to the following:

Keypad key Function______ __ ________ _ _
 Home beginning-of-file
 CSRS UP previous-line

Pg Up previous-page
CSRS LEFT backward-character

 CSRS RIGHT forward-character
 End end-of-file
 CSRS DOWN next-line
 Pg Dn Next-page

All these special keys are indicated in EMACS macroes by use of the FN prefix. Below is a list of many of
the keys and the codes used to specify them. Also the codes may be gotten by using the describe-key (^X ?) command
on the suspect key.

Compiling under TURBO C

To compile MicroEMACS under TURBO C, set the TURBO integrated environment with the following
 options:

 Memory model LARGE
Floating point NONE
Default char type UNSIGNED
Data alignment BYTE
Merge duplicate strings ON
Standard stack frame off

 Test stack overflow off

Optimize for SIZE

78

Machine Dependent Notes MicroEMACS Reference Manual

Use register optimization ON
Register optimization ON
Jump optimization ON

Initialize segments OFF
Stack warnings OFF

Names: Code names
Segment name *

 79

MicroEMACS Reference Manual Machine Dependent Notes

H . 2 W i n d o w s 3 . 1 , O S / 2 , W i n d o w s 9 5 a n d W i n d o w s N TH . 2 W i n d o w s 3 . 1 , O S / 2 , W i n d o w s 9 5 a n d W i n d o w s N T

On the IBM-PC there is a very nice window oriented version of MicroEMACS prepared by Pierre Perot. It
h a s a l l t h e f u n c t i o n a l i t y o f t h e c h a r a c t e r o r i e n t e d v e r s i o n , b u t i n a d d i t i o n h a s d r o p d o w n m e n u s , a n d m o u s e
functionality more in line with how the mouse is used in these environments.

There is an extensive on-line help facility for the windows version, which can be accessed from the HELP
menu when MicroEMACS is running. Much of the CUA style of mousing and editing is provided by an extra startup
file, CUA.CMD, which is run when MicroEMACS for Windows is started. If you prefer the original style of mousing
(if, for instance, you work on many platforms) rename the CUA.CMD file to something else.

The windows version has been tested under Windows 3.1, Windows 95, Windows NT v3.5 and under OS/2
in the windows emulation box.

In addition, there is also a WINDOWS NT console mode version which runs under Windows NT and
 WIndows 95. This version is recommended for those environments, as its performance (as a 32 BIT application) is
 much better than the DOS version running in a DOS box on these machines.

H . 3 H P 1 5 0H . 3 H P 1 5 0

This machine from Hewlett Packard is very unusual for an MSDOS machine. It has a touch screen and is
 very function key oriented. An additional command, label-function-key allows you to place labels on the on screen
 function key labels. A numeric argument indicates which function key to label (one through eight) and then the
 program prompts for a 16 character label, which will be used as two lines of eight characters. To label function key
 three with “save file” from a macro, you would use:

3 label-function-key "save file"

Notice the 4 spaces after “save”. This forces “file” to begin on the second line of the label.

80

Machine Dependent Notes MicroEMACS Reference Manual

H . 4 A t a r i 5 2 0 / 1 0 4 0 S TH . 4 A t a r i 5 2 0 / 1 0 4 0 S T

The ATARI ST family of computers have a dual personality. They may use either a monochrome or a color
screen. EMACS supports two screen resolutions on each monitor.

NOTE

When you set MicroEMACS up on your system, please remember to install it on the desktop as a GEM
application. If you have EMACS set as a TOS application, the mouse will not function properly, and EMACS will alert
you to this problem by beeping the bell.

Monitor $sres size #color $palette format______ ____ ___ _____ ______ ______ _ _ _ _ _
 Color LOW 40x25 16 000111222333444555666777
 MEDIUM
 80x25 4 000111222333
 Mono HIGH 80x25 2 000
 DENSE 80x50 2 000

 The $palette environment variable can be used to change what color is associated with each color name.
With a color monitor, each group of three digits indicates an octal number specifying the RED, GREEN and BLUE
levels of that color. Each color digit can vary from 0 to 7. For example, the initial setting of $palette in LOW
resolution is:

000700070770007707077777

which broken up is:

000 700 070 770 007 707 077 777

which means:

000 Black
 700 Red
 070 Green
 770 Yellow
 007 Blue
 707 Magenta
 077 Cyan
 777 White

 Also the mouse buttons are bound to mouse functions as described in the chapter about mice. The cursor
keys and the function keys are bound similarly to IBM-PC.

Files generated by EMACS on the ATARI ST have a single return character at the end of each line, unlike
the desktop files which want to have two returns. This makes it display files strangely from GEM’s [SHOW] option,
but makes the files port to other computers much nicer. When compiling MicroEMACS, the ADDCR symbol in
estruct.h will cause emacs to generate line ending sequences compatible with GEM.

Currently, when operating under the Mark Williams MSH program, EMACS can shell out and perform
external commands. This capability will be added later for the Beckmeyer shell and under GEMDOS.

81

MicroEMACS Reference Manual Machine Dependent Notes

H . 5 A m i g a 1 0 0 0H . 5 A m i g a 1 0 0 0

The Commodore AMIGA 1000 version of MicroEMACS does fully support the mouse, window resizing
 and the close gadget. It runs in medium resolution, using the colors defined for the workbench.

Note about Compiling MicroEMACS

If you are compiling the sources on the AMIGA to produce an executable image, and you
are using the Lattice compiler, be sure to give the CLI command ‘STACK 40000’ before compiling
to make sure the compiler has sufficient stack space to successfully complete compilation.

82

Machine Dependent Notes MicroEMACS Reference Manual

H . 6 U N I X V 5 , F R E E B S D a n d B S D 4 . [2 3]H . 6 U N I X V 5 , F R E E B S D a n d B S D 4 . [2 3]

M i c r o E M A C S u n d e r U N I X u t i l i z e s t h e T E R M C A P l i b r a r y t o p r o v i d e m a c h i n e i n d e p e n d e n t s c r e e n
f u n c t i o n s . M a k e s u r e t h a t t e r m c a p i s a v a i l a b l e a n d p r o p e r l y s e t o n y o u r a c c o u n t b e f o r e a t t e m p t i n g t o u s e
MicroEMACS.

Under systems which support job control, you can use the ^XD suspend-emacs command to place EMACS
into the background. This carries a much smaller overhead than bringing up a new shell under EMACS. EMACS will
properly redraw the screen when you bring it back to the foreground.

If the symbol VT100 has been set to 1 in the estruct.h options file, EMACS will recognize the key sequence
<ESC>[as the lead in sequence for the FN function key prefix.

With the addition of some very machine/operating system specific code, EMACS can prevent two or more
people from modifying the same file at the same time. The upper level of a set of functions to provide file locking exist
in the source file LOCK.C. It requires two machine specific functions written and linked into EMACS for it to
operate properly.

char *dolock(fname)

char *fname;

dolock() locks a file, preventing others from modifying it. If
it succeeds, it returns NULL, otherwise it returns a pointer to
a string in the form "LOCK ERROR: explanation".

char *undolock(fname)

char *fname;

undolock() unlocks a file, allowing others to modifying it. If
it succeeds, it returns NULL, otherwise it returns a pointer to
a string in the form "LOCK ERROR: explanation".

83

MicroEMACS Reference Manual Machine Dependent Notes

H . 7 D E C V M S o p e r a t i n g s y s t e mH . 7 D E C V M S o p e r a t i n g s y s t e m

TERMINALS

Depending upon the options set in ESTRUCT.H, MicroEMACS uses either the capabilities of VMS SMG,
 working with any terminal that is defined in SMGTERMS.TXT or TERMTABLE.TXT (see your SMG manual for
 more information), or the ANSI escape sequences. Full keyboard support, including function keys, is provided for
 VT100 and VT200 series compatible terminals. Mouse support is provided under the ANSI version only at this time.

Mouse support is provided for the VSII workstation’s VT220 terminal emulator, and other terminal emulators that use
the same escape sequences for mouse control. (There is some partial support for the BBN BitGraph mouse sequences
in the sources, but this is not yet complete). Terminals may have up to 100 lines and 160 columns.

The maximum terminal size is 256 columns and 72 rows. If you run MicroEMACS on a terminal that is
 larger than this, MicroEMACS will reduce it to these limits while you are editing.

Flow control
Some terminals will require the use of XON/XOFF flow control when used with MicroEMACS. When

 XON/XOFF flow control is used, you will not be able to use functions bound to ^S or ^Q, and should use bind-to-key
to put these functions on other keys. MicroEMACS does not change the flow control characteristics of your terminal

 line while it is running. If your terminal requires flow control, you should:

$ SET TERM/HOSTSYNC/TTSYNC

before entering MicroEMACS. If you are on a VSII emulated workstation terminal, are using the SSU multi-
session protocol (VT330 and VT340 with SSU enabled), or are certain that your terminal does not require XON/XOFF
flow control, you should

$ SET TERM /HOSTSYNC/NOTTSYNC

This will allow you to use ^S and ^Q for MicroEMACS commands. Note that if you are using a VSII with
VWS V3.2 or later, you must leave the /HOSTSYNC enabled in order for the cross/session cut and paste capability to
work properly.

KEYBOARD

The VMS version understands the LK201 functions of VT200 series, vt300 series, and compatible terminals
and terminal emulators, and allows you to bind to them as function keys. In addition, the VT100 numeric keypad, in

 application mode, is available as function keys. MicroEMACS will only put the keypad into application mode for you
if the KEYPAD option is set in ESTRUCT.H. In this situation, MicroEmacs will detect your kepad’s state, and restore
it to that state upon exiting. If MicroEMACS has not been compiled with this option, you may still put the keypad into
application mode by issuing the command “SET TERM /APPLICATION” before entering MicroEMACS.

VT200 keys_____ ____ _

 Note that F1 through F5 are local function keys on DEC terminals.

F6 = FN6 FIND = FNS
FN7 = FN7 INSERT = FNC
F8 = FN8 REMOVE = FND
F9 = FN9 SELECT = FN@
F10 = FN0 PREV = FNZ
F11 = S-FN1 NEXT = FNV
F12 = S-FN2 Arrow Up = FNP
F13 = S-FN3 Arrow Down = FNN
F14 = S-FN4 Arrow Right = FNF
HELP (F15) = S-FN5 Arrow Left = FNB
DO (F16) = S-FN6
F17 = S-FN7
F18 = S-FN8
F19 = S-FN9
F20 = S-FN0

84

Machine Dependent Notes MicroEMACS Reference Manual

VT100 and VT200 numeric keypad in application mode_____ __ _____ ______ _____ _ ________ _____ _ _ _ _ _ _ _

 PF1 = FN^1 PF2 = FN^2 PF3 = FN^3 PF4 = FN^4
7 = A-7 8 = A-8 9 = A-9 - = A--
4 = A-4 5 = A-5 6 = A-6 , = A-,
1 = A-1 2 = A-2 3 = A-3 ENTER = A-E
0 = A-0 . = A-.

WARNING

The VMS version contains code for interpreting function keys that are sent as Ansi
sequences that begin with the ESC character. Because of this, MicroEMACS cannot process an
incoming ESC until it knows what character follows it. This can cause problems with terminating
search and replace strings. If you use ESC as the meta-prefix character (which is the default) you
must type one additional keystroke following ESC before emacs will recognize that you have edited
the search command prompt, and are continuing. (The additional character is processed normally be
MicroEMACS, it is NOT discarded.)

M i c r o E M A C S must wait long enough for the network delay that might be i n v o l v e d
between seeing the ESC and seeing the characters that follow it. If holding down one of the arrow
keys causes characters to drop into your file, then you may want to alter the delay yourself. The
logical variable MICROEMACS$SHORTWAIT may be set to vary that delay. The default delay is
400ms (4 tenths of a second). The equivalent value in MICROEMACS$SHORTWAIT is 4000000.

Special case for BBN BItGraph

If you are using the BBN BitGraph, execute the following commands before entering MicroEMACS, and
you will get mouse support:

$ esc[0,8] = 27
$ microemacs$mouse_enable == esc+":5;6;L"+esc+":0;63;;;;;;;;;9;16;c"
$ microemacs$mouse_disable == esc+":5;1;L"+esc+":0;0c"
$ exit

Do NOT do this for any other terminals.

Search List for EMACS.RC

VMS MicroEMACS will first search logical name MICROEMACS$LIB:, then SYS$LOGIN:, then finally
the current directory when looking for startup files or help files.

If desired, MICROEMACS$LIB may be defined to be a VMS search list that first searches a user directory,
and then a system directory.

G e n e r a l l y , y o u s h o u l d c r e a t e a p r i v a t e d i r e c t o r y w h e r e y o u k e e p a l l y o u r . C M D fi l e s , a n d i n y o u r
LOGIN.COM $DEFINE a logical name to point to this area.

In addition to whatever commands you have in your EMACS.RC file, one command you should certainly
include is “set $ssave FALSE”. The “safe save” mechanism, which writes a buffer to a temporary file, deletes the old
version of a file, and then moves the temporary file to its permanent name, works wonderfully on most systems, but
makes no sense on VMS, which maintains older versions of a file.

Using MicroEMACS as a subprocess
MicroEmacs can now be kept in a subprocess. You can arrange to start emacs only once in a job, and to re-

attach to it each time you want to use it. This is optional. To use this feature, install MicroEMACS in the following
way:

1. MicroEMACS contains two images. ME.EXE is a small program for
starting and stopping the Emacs subprocess. The source for ME.
is in ME.C, and should not be linked into MESHR.EXE. MESHR.EXE
is the actual MicroEMACS image. The name "MESHR" is required for
MAIL/NOTES support, see next section for details.

2. Make sure that the SYS$SHARE search list includes MESHR.EXE. If you
don’t have the privilages to move MESHR.EXE into SYS$SHARE, you
can $ DEFINE the MESHR logical name to be the full name and location of

85

MicroEMACS Reference Manual Machine Dependent Notes

the MESHR.EXE program. For example, you could store all of these
programs in the MICROEMACS$LIB: search list, and say:

$ DEFINE MESHR microemacs$lib:meshr.exe

3. Put ME.EXE in MICROEMACS$LIB and the following line in your LOGIN.COM:

$ me :== $microemacs$lib:me

4. Put a line in your EMACS.RC that will

bind-to-key suspend-emacs ^C ; use your usual exit-emacs key

Now, use the “$ ME” command to invoke microemacs. Subseqeuent invocations in the same job will re-use
the existing subprocess. You can use the full capabilty of the microemacs command line in the first and in all

 subsequent invocations of ME.

WARNING:

MicroEMACS will ALWAYS read in new copies of any files you specify on the command line, even if you
are already editing it. If you edit a file a second time with the same MicroEMACS, you will get a NEW buffer with

 ANOTHER copy of the file. The old buffer is still there also. It is easy, in this situation, to accidently edit in a
 WRONG BUFFER, and if you write out an obsolete buffer, you will lose earlier edits!

This is considered a bug and may be fixed in a later version of MicroEMACS. To avoid this situation, do not
specify a file on the command line if MicroEMACS already has that file in a buffer. Use the “find-file” MicroEMACS
command instead.

Using MICROEMACS with MAIL and NOTES:

With VMS V5 and later versions, the MAIL interface to Microemacs is much simplified. With VMS V5, the
MESHR.EXE image does NOT have to be installed as a known image to be used as a callable editor from MAIL.

 Therefore, to use MicroEMACS as your VMS MAIL editor, simply add the following lines to your LOGIN.COM:

$ DEFINE MAIL$EDIT CALLABLE_ME
$ MAIL :== MAIL/EDIT

a n d m a k e s u r e t h a t t h e S Y S $ S H A R E s e a r c h l i s t i n c l u d e s M E S H R . E X E . I f y o u d o n ’ t h a v e p r i v s o r
permission to move MESHR.EXE into SYS$SHARE, you can $ DEFINE the MESHR logical name to be the full
n a m e a n d l o c a t i o n o f t h e M E S H R . E X E p r o g r a m . F o r e x a m p l e , y o u c o u l d s t o r e a l l o f t h e s e p r o g r a m s i n t h e
MICROEMACS$LIB: search list, and say:

$ DEFINE MESHR microemacs$lib:meshr.exe

Note that this is the same location as is required for using kept MicroEMACS.

To abort sending a message, exit MicroEMACS without writing out the mail message file.

To use MicroEMACS as your VAX NOTES editor, issue the following command to VAX NOTES:

NOTES> SET PROFILE/EDIT=(ME,CALL)

Note, if you are still in the dark ages of VMS V4, you will have to either install MESHR as a known image,
or following the original “Second way” instructions given in the existing appendix F.6 of the older MicroEMACS
manual (previous to version 3.10).

Second way, as described in older versions

In the event that you cannot get your system manager to INSTALL MicroEMACS as known image, you can
use the following technique:

1. In MICROEMACS$LIB:MEMAIL.COM, put the following command file:

$! Use on VAX/VMS as MAIL$EDIT for using MicroEMACS as mail editor.
$ if "’’P1’" .NES. "_NL:" then if "’’P1’" .NES. "" then copy ’P1’ ’P2’

86

Machine Dependent Notes MicroEMACS Reference Manual

$ define/user sys$input sys$output
$ me ’P2’
$ exit

This file may have come with your MicroEMACS kit.

2. In your LOGIN.COM, put the following lines:

$ me :== $MICROEMACS$LIB:MESHR.EXE ! Assumes meshr.exe is there
$ define mail$edit microemacs$lib:me_edit.com

3. In NOTES, give the command

NOTES> SET PROFILE/EDIT=(@MicroEMACS$lib:me_edit.com,SPAWN)

System messages and EMACS
MicroEMACS will intercept system broadcast messages and display them
on the message line after any input from the user. These message are
stored in an INVISIBLE buffer named [-messages-]. To view these at your
convenience, use the following procedure:

;
; Show any system messages MicroEMACS may have intercepted.
; The numeric prefix of pop-buffer ensures its invisibility.
;
store-procedure "Show_messages"

1 pop-buffer "[-messages-]"
!endm

Building MicroEMACS for VMS

The configuration options are set in file estruct.h:

- Under the category of "Machine/OS definitions", set VMS to "1" and all
others to "0".

- Under "Compiler definitions", set all selections to "0". Selecting
VMS implies that you are using VAXC.

- Under "Special keyboard definitions", be sure "VT100" is set to "0".
This option is not required for the VMS version, it is for other
systems using ANSI terminal support. VMS in combination with SMG or
ANSI already handles the special characteristics of Ansi keyboards.

- Under "Terminal Output definitions", set either ANSI or SMG to "1"
and all others to "0". As stated previously, only ANSI supports the
mouse at this time.

- Under "Configuration options", you may select as you wish, with the
following notes:

- COLOR support does not exist for VMS, even when using
color workstations.

- MOUSE support should be enabled if you have any VSII
workstations. Only supported under the ANSI driver.

- KEYPAD support recognises whether your keypad is already
in application mode or not, and puts your keypad
in its correct state on exit.

- XNONOFF automatically allows you to use control-S or
control-Q in MicroEMACS, by disabling the TTSYNC
characteristic. This option should not be set if
MicroEMACS might be used on DecStations or VT100s.
It also should not be used with slow terminals or
terminal emulators connected to fast terminal lines.

- RMSIO support should absolutely be used. This option
allows the writing and reading of files in VMS’s

87

MicroEMACS Reference Manual Machine Dependent Notes

variable-length format, as opposed to STREAM-LF,
and cuts down on file writing and reading time by
approximately two thirds.

- OPTMEM support may be used on VMS versions 5.0 and higher.
It substitutes the C library’s memory allocation
calls for the native VAX calls, and gives a speed
improvement.

If you have MMS, you can use the supplied DESCRIP.MMS to build MicroEMACS. Otherwise, the
 command file MEMAKE.COM has been provided. These files assume that you are using SMG as your terminal driver.

If you are using ANSI, then you must replace SMG with ANSI in the command and opt files. If you do not have MMS
or are missing MEMAKE.COM, simply compile each module with “CC”, and link with the command:

$ LINK MESHR/OPTION/SHARE

Note that the executable filename must end in “SHR” in order for MicroEMACS to be used as a callable
 editor from MAIL or NOTES. (Method 1 above.)

If you edit any of the Emacs sources, note that any global or external data must be declared as “noshare” in
order for the VMS callable editor support to work properly. This applies to all global data used in the VMS version,

 but not to routines or to “static “data. The “noshare” declaration is #define’d away on non-VMS systems. If you fail to
do this, VMS will not allow you to INSTALL MicroEMACS as a sharable library.

88

Mode Flags MicroEMACS Reference Manual

A p p e n d i x IA p p e n d i x I

M o d e F l a g sM o d e F l a g s

The two environment variables, $cmode and $gmode, contain a number the corresponds to the modes set for
the current buffer and the editor as a whole. These are encoded as the sum of the following numbers for each of the
possible modes:

WRAP 1 Word wrap
CMODE 2 C indentation and fence match
SPELL 4 Interactive spell checking (Not Implemented Yet)
EXACT 8 Exact matching for searches
VIEW 16 Read-only buffer
OVER 32 Overwrite mode
MAGIC 64 Regular expressions in search
CRYPT 128 Encryption mode active
ASAVE 256 Auto-save mode
REP 512 Character replace mode
ABBREV 1024 Abbreviation expantion mode

So, if you wished to set the current buffer to have CMODE, EXACT, and MAGIC on, and all the others off,
you would add up the values for those three, CMODE 2 + EXACT 8 + MAGIC 64 = 74, and use a statement like:

set $cmode 74

or, use the binary or operator to combine the different modes:

set $cmode &bor &bor 2 8 64

I n t e r n a l F l a g sI n t e r n a l F l a g s

Some of the ways EMACS controls its internal functions can be modified by the value in the $gflags
environment variable. Each bit in this variable will be used to control a different function.

GFFLAG 1 If this bit is set to zero, EMACS will not
automatically switch to the buffer of the
first file after executing the startup macroes.

GFSDRAW 2 If this bit is set to one, supress redraw events.
GFEXIT 4 This bit is set to one while executing the

$exithook. If reset to zero, the exit is canceled.

C u r r e n t b u f f e r fl a g sC u r r e n t b u f f e r fl a g s

The $cbflags environment variable allows the user to modify some of the characteristics of the current
buffer. The various characteristics are encoded as the sum of the following numbers:

BFINVS 1 Internal invisible buffer
BFCHG 2 Changed since last write
BFTRUNC 4 buffer was truncated when read
BFNAROW 8 buffer has been narrowed

Only the invisible and changed flags can be modified by setting the $cbflags variable. The truncated file and
narrowed flags are read only.

89

MicroEMACS Reference Manual Index

I n d e xI n d e x

!BREAK Directive $modeflag 45 Amiga 1000 82
53 $msflag 46 ASAVE mode 27

!ENDM Directive 51 $newscreen 46 Atari 520/1040ST 81
!FORCE Directive $numwind 46

51 $orgcol 46 BB
!GOTO Directive 52 $orgrow 46 Backward Search 14
!IF $pagelen 46 backward-character

!ELSE $palette 46 5, 71
and !ENDIF $paralead 46 Basic cursor
Directives 51 $pending 46 movement 5

!RETURN Directive $popflag 46 BBS 61
53 $popwait 46 begin-macro 41

!WHILE and $posflag 46 beginning-of-file 5, 8
!ENDWHILE $progname 46 beginning-of-line 5
Directives 52 $ram 46 bind-to-key 57

$abbell 44, 59 $readhook 46 buffer 5, 7, 25
$abcap 44 $region 46 Buffer Variables 48
$abquick 44 $replace 46
$acount 44 $rval 46 CC
$asave 44 $scrname 46 case-region-lower 34
$bufhook 44 $search 46 case-word-capitalize
$cbflags 44, 89 $searchpnt 46 35
$cbufname 44 $seed 46 case-word-lower 35
$cfname 44 $softtab 46 case-word-upper 34
$cmdhook 44 $sres 46 change-file-name 32
$cmode 44 $ssave 47, 85 change-screen-size
$curchar 44 $sscroll 47 71
$curcol 44 $status 47 change-screen-width
$curline 44 $sterm 47 71
$curwidth 44 $target 47 Changing Case 34
$curwind 44 $time 47 clear-and-redraw 18,
$cwline 44 $timeflag 47 71
$debug 44, 55 $tpause 47 CMODE mode 27
$deskcolor 44 $undoflag 47 color 27
$diagflag 45 $version 47 color pallette 46
$discmd 45 $wchars 47 command line 17, 61
$disinp 45 $wline 47 command processor
$disphigh 45 $wraphook 47 39
$dispundo 45 $writehook 47 command.com 39
$exbhook 45 $xpos 47 Commands
$exithook 45 $yankflag 47 unaffected by
$fcol 45 $ypos 47 numeric
$fillcol 29, 45 .emacsrc 43, 61 arguments. 73
$flicker 45 <NL> 13 Constants 43
$fmtlead 45 control key 3
$gflags 45, 89 A control-x 3A
$gmode 45 A Word About copy-region 11
$hardtab 45 Windows Creating a Screen 21
$hjump 45 Buffers Creating Windows
$hscroll 45 Screens 17
$kill 45 and Modes 7 CRYPT mode 28, 61
$language 45 ABBREV mode 27 cshell 39
$lastkey 45 abcap 59 CUA.CMD 80
$lastmesg 45 abquick 59 cursor keys 5
$line 45 add-abbrev 59 cut 21
$lterm 45 add-global-mode 27 Cut and Paste 21
$lwidth 45 add-mode 4, 27 cycle-screens 21
$match 45

90

Index MicroEMACS Reference Manual

forward-character 5, move-window-up 17,
D 71 72D
debugging 55 function key window Moving a Screen 21
DEC VMS operating 43 Moving around with

system 84 Functions 48 the mouse 20
default string 13 MSDOS
define-abbreves 59 G Windows 95G
Defining and Getting Started 3 Windows NT

Deleting a global 53, 54 OS/2 – IBM-
Region 10 goto-line 71 PCs 1

delete-blank-lines 8 goto-mark 71
delete-buffer 25 grow-window 18, 71 NN
delete-global-mode newline 3

27 H next-buffer 25, 72H
delete-mode 27 handle-tab 35, 71 next-line 5, 72
delete-next-character Help File 61 next-page 72

8, 71 HOME environment next-paragraph 5, 72
delete-next-word 8, variable 61 next-window 72

71 horizontal scrolling next-word 5, 72
delete-previous- 20 numeric arguments

character 8, 71 HP 150 80 71
delete-previous-word hunt-backward 71

8, 71 hunt-forward 72 OO
delete-undos 37 open-line 8
Deleting a Screen 22 I open-window 17I
Deleting Windows i-shell 39 OVER mode 29

18 IBM-PC/XT/AT and
Deletions 8 its clones 78 PP
describe-bindings 57 insert-abbrevs 59 Parameters to
describe-key 57 Insertions 7 Procedures 54
desk accessories 20 Interactive variables Parts and Pieces 3
desktop 21 48 paste 21
detab-region 35, 71 PATH environment
Directives 51 K variable 61K
dragging 20 key bindings pipe-command 39
Dragging around 20 declined 57 point 10

Keys and the pop-buffer 72
E Keyboard 3 previous-line 5, 72E
emacs.rc 43, 61 kill buffer 11 previous-page 72
encryption 28 kill-abbreves 59 previous-paragraph
end-macro 41 kill-region 10 5, 72
end-of-file 5 kill-to-end-of-line 8, previous-window 17,
end-of-line 5 72 72
end-of-word 71 previous-word 5, 72
entab-region 35, 71 LL
Entering Text 4 label-function-key 80 QQ
Environmental list-buffers 25, 27, 72 Query-Replace 14

Variables 44 list-undos 37 query-replace-string
error parsing 61 local 54 14, 29, 72
EXACT mode 28 Local and Global quick-exit 72
Exact Searches 14 Variables 53
exchange-point-and- RR

mark 71 M rebinding 57M
execute-buffer 43 macro-to-key 57 redraw-display 18,
execute-file 43 MAGIC mode 28 72
execute-macro 41 mark 10 Reformatting
execute-program 39 meta key 3 Paragraphs 34
exit-emacs 8, 71 mode line 3, 7 region 21

modes 4, 27 regular expressions
F mouse 20, 46 28F
file locking 83 mouse cursor 20 remove-mark 72
fill-paragraph 7, 34 Mousing under replace-string 14, 29,
filter 39 WINDOWS 72
filter-buffer 39 95 22 Repositioning within
find-file 17, 25 move-window-down a Window 18
Forward Search 13 17, 72 resize-window 18, 73

91

MicroEMACS Reference Manual Index

Resizing a Screen 21 special keys 3
Resizing Windows split-current-window VV

18 17, 73 Variables 44
restricted mode 61 startup files 61 vertical scrolling 20
run 43 store-macro 73 VIEW mode 30

store-procedure 43,
S 73 WS W
save-file 5 suspend-emacs 39, window 7
Saving your text 5 83 windows 3, 17
screen 7, 21 switches 61 Creating 17
screen resolution 46 Switching to a Deleting 18
Screens 21 Screen 21 Resizing 18
scroll-next-down 18, Windows 3.1

73 T OS/2T
scroll-next-up 17, 73 tab handling 35 Windows 95
search-forward 13, Tabs 35, 45, 46 and Windows

73 termcap 83 NT 80
search-reverse 14, 73 text window 3 Windows 95 1, 22
Searching and tilde Windows NT 1

Replacing 14 special use 43 WRAP mode 29
select-buffer 25, 73 trim-region 35, 73 wrap-word 30
set 35, 73 Wrapping Text 34
set-encryption-key U write-file 5U

28 undo 37 writefile 32
set-mark 10, 73 UNIX 1
shell 39 UNIX V5 YY
shell-command 39 FREEBSD and yank 10
shrink-window 18, BSD4.[23] 83 Yanking a Region 11

73 User variables 47

92

C o n t e n t sC o n t e n t s

Chapter 1 Installation 1

Chapter 2 Basic Concepts 3

Chapter 3 Basic Editing—Simple Insertions and Deletions 7

Chapter 4 Using Regions 10

Chapter 5 Search and Replace 13

Chapter 6 Windows 17

Chapter 7 Using a Mouse 20

Chapter 8 Buffers 25

Chapter 9 Modes 27

Chapter 10 Files 32

Chapter 11 Screen Formatting 34

Chapter 12 Undoing the Damage 37

Chapter 13 Access to the Outside World 39

Chapter 14 Keyboard Macroes 41

Chapter 15 MicroEMACS Procedures 43

Chapter 16 Debugging MicroEMACS Procedures 55

Chapter 17 Key Bindings, What they are and why 57

Chapter 18 Abbreviations and Their Definitions 59

Appendix A MicroEMACS Command Line Switches and Startup Files 61

Appendix B Command Completion 62

Appendix C MicroEMACS Commands 63

Appendix D MicroEMACS Bindings 69

Appendix E Numeric Arguments to Commands 71

Appendix F Supported machines 75

Appendix G Function Keys 77

Appendix H Machine Dependent Notes 78

Appendix I Mode Flags 89

Index 90

i

